Main Article Content

Authors

Predation is a biotic factor that influences the structure and functioning of ecosystems, its effect can be quantified through functional (FR) and numerical response in a successful-invasion context. We use FR to understand the coevolutionary relationships, and measured the biological response of the predators Notonecta peruviana and Buenoa fasciata in the control of fourth-stage larvae of Aedes aegypti (F1) at different densities (5, 10, 20, 35, 55 and 80 larvae / liter). Fasting predators (48 hours) were introduced to the test containers
(one individual per species) and the FR, the number of preys consumed (Ne), the attack coefficient (a) and handling time (Th). N. peruviana and B. fasciata developed a type II FR in the consumption of larvae of Ae. aegypti (p ≤ 0.01), and occupied close handling times (Th) (t = –1.93; df = 12; p = 0.078). N. peruviana preyed (Ne) twice as many larvae of Ae. aegypti (p ≤ 0.05) and showed a higher attack coefficient (a) in relation to B. fasciata (t = 14.92;
df = 12; p = 0.000). The predators N. peruviana and B. fasciata rapidly destabilized and consumed the preys. N. peruviana preyed twice as many larvae, attributable to the recent
predator-prey effect compared to the possible coevolutionary adjustment between B. fasciata and Ae. aegypti. It would be important to consider the predator species in the vector control
programs for aedine mosquitoes.

Ayala-Sulca, Y. O., Colos-Galindo, P., Portal-Quicaña, E., Ibarra-Juárez, L., Cóndor-Alarcón, R., Carrasco-Badajoz, C., & Ramírez, R. (2021). Quantitative biological response of two predators (Heteroptera: Notonectidae) in the larval control of Aedes aegypti (Diptera: Culicidae). Revista Colombiana De Entomología, 47(2), e10535. https://doi.org/10.25100/socolen.v47i2.10535

AYALA-SULCA, Y. O.; IBARRA-JUAREZ, L.; GRIECO, J. P.; ACHEE, N.; MERCADO-HERNANDEZ, R.; FERNÁNDEZ-SALAS, I. 2008. Respuesta conductual de Aedes aegypti (Linnaeus, 1762) frente a adulticidas piretroides de uso frecuente en salud pública. Revista Peruana de Medicina Experimental y Salud Pública 25 (1): 26-34 https://doi.org/10.17843/rpmesp.2008.251.1233

BEGON, M.; HARPER, J.; TOWNSEND, C. 2000. Ecología: Individuos, poblaciones y comunidades. Ed. Omega. Barcelona-España. 450 p.

BLAUSTEIN, L.; KOTLER, B. P.; WARD, D. 1995. Direct and indirect effects of a predatory backswimmer (Notonecta maculata) on community structure of desert temporary pools. Ecological Entomology 20 (4): 311-318. https://doi.org/10.1111/j.1365-2311.1995.tb00462.x

BRATHWAITE-DICK, O.; SAN MARTÍN, J. L.; MONTOYA, R. H.; DEL DIEGO, J.; ZAMBRANO, B.; DAYAN, G. H. 2012. The history of dengue outbreaks in the Americas. The American Journal of Tropical Medicine and Hygiene 87 (4): 584-593. https://doi.org/10.4269/ajtmh.2012.11-0770

BUXTON, M.; CUTHBERT, R. N.; DALU, T.; NYAMUKONDIWA, C.; WASSERMAN, R. J. 2020. Predator density modifies mosquito regulation in increasingly complex environments. Pest Management Science 76 (6): 2079-2086. https://doi.org/10.1002/ps.5746

CABEZAS, C.; FIESTAS, V.; GARCÍA-MENDOZA, M.; PALOMINO, M.; MAMANI, E.; DONAIRES, F. 2015. Dengue en el Perú: A un cuarto de siglo de su reemergencia. Revista Peruana de Medicina Experimental y Salud Pública 32 (1): 146-156. https://doi.org/10.17843/rpmesp.2015.321.1587

CONSOLI, R. A. G. B.; OLIVEIRA, R. L. de. 1994. Principais mosquitos de importância sanitária no Brasil. Editora FIOCRUZ. Rio de Janeiro. 225 p.

CUTHBERT, R. N.; CALLAGHAN, A.; DICK, J. T. A. 2019a. A novel metric reveals biotic resistance potential and informs predictions of invasion success. Scientific Reports 9 (1): 1-11. https://doi.org/10.1038/s41598-019-51705-9

CUTHBERT, R. N.; DALU, T.; WASSERMAN, R. J.; CALLAGHAN, A.; WEYL, O. L. F.; DICK, J. T. A. 2019b. Using functional responses to quantify notonectid predatory impacts across increasingly complex environments. Acta Oecologica 95: 116-119. https://doi.org/10.1016/j.actao.2018.11.004

DeBACH, P.; ROSEN, D. 1991. Biological control by natural enemies. 2 edition. Cambridge University Press. Cambridge-England. 456 p.

DICK, J.; GALLAGHER, K.; AVLIJAS, S.; CLARKE, H.; LEWIS, S.; LEUNG, S.; MINCHIN, D.; CAFFREY, J.; ALEXANDER, M.; MAGUIRE, C.; HARROD, C.; REID, N.; HADDAWAY, N.; FARNSWORTH, K.; PENK, M.; RICCIARDI, A. 2013. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biological Invasions 15: 837-846. https://doi.org/10.1007/s10530-012-0332-8

DOMÍNGUEZ, E.; FERNÁNDEZ, H. R. 2009. Macroinvertebrados bentónicos sudamericanos: Sistemática y biología. Fundación Miguel Lillo. Tucuman-Argentina. 654 p.

DUARTE, R. F.; DÍAZ, Z. M.; RAMOS, R. Q.; REID, J. W.; SANTANDER, C. E.; VICTORES, L. S. 2010. En torno a la depredación experimental de larvas de mosquitos por el copépodo Mesocyclops aspericornis (Copepoda: Cyclopoida). Revista Electrónica de Veterinaria 11 (38): 1- 7.

ELLIS, R. A.; BORDEN, J. H. 1970. Predation by Notonecta Undulata (Heteroptera: Notonectidae) on Larvae of the Yellow-Fever Mosquito. Annals of the Entomological Society of America 63 (4): 963-973. https://doi.org/10.1093/aesa/63.4.963

ESPINOZA, M.; CABEZAS, C.; RUIZ, J. 2005. Un acercamiento al conocimiento de la fiebre amarilla en el Perú. Revista Peruana de Medicina Experimental y Salud Publica 22 (4): 308-315.

FAY, R.; ELIASON, D. 1966. A preferred oviposition site as a surveillance method for Aedes aegypti. Mosquito News 26 (4): 531-535.

FERNÁNDEZ-ARHEX, V.; CORLEY, J. C. 2004. La respuesta funcional: Una revisión y guía experimental. Ecología austral 14 (1): 83-93.

FISCHER, S.; ZANOTTI, G.; CASTRO, A.; QUIROGA, L.; VARGAS, D. 2013. Effect of habitat complexity on the predation of Buenoa fuscipennis (Heteroptera: Notonectidae) on mosquito immature stages and alternative prey. Journal of Vector Ecology 38: 215-223. https://doi.org/10.1111/j.1948-7134.2013.12033.x

GRIFFIN, L. 2014. Laboratory evaluation of predation on mosquito larvae by Australian mangrove fish. Journal of Vector Ecology 39 (1): 197-203. https://doi.org/10.1111/j.1948-7134.2014.12087.x

HECKMAN, C. W. 2011. Encyclopedia of South American Aquatic Insects: Hemiptera - Heteroptera: Illustrated Keys to Known Families, Genera, and Species in South America. Springer Netherlands. 679 p.

HOLLING, C. S. 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist 91 (7): 385-398. https://doi.org/10.4039/Ent91385-7

JULIANO, S. A. 2001. Nonlinear curve fitting: Predation and functional response curves. Scheiner, S. M.; Gurevitch, J. (Eds.). Design and analysis of ecological experiments. 2nd. ed. Oxford University Press. Oxford pp. 178–196.

LEIVA, N.; CÁCERES, O. 2004. Variabilidad genética de Aedes aegypti en algunas áreas del Perú usando Single Stranded Conformational Polymorphism (SSCP). Revista Peruana de Medicina Experimental y Salud Pública 21 (3): 157-66. https://doi.org/10.17843/rpmesp.2004.213.952

MINSA, MINISTERIO DE SALUD. 2019. Boletín Epidemiológico del Perú: Semana Epidemiológica 07-2019 [Internet]. Lima, Perú: Centro Nacional de Epidemiología, Prevención y Control de Enfermedades. Disponible en: https://www.dge.gob.pe/portal/docs/vigilancia/boletines/2019/07.pdf

PERVEZ, A.; OMKAR. 2005. Functional responses of coccinellid predators: An illustration of a logistic approach. Journal of Insect Science 5: 1-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283886/

PRITCHARD, D. W.; PATERSON, R. A.; BOVY, H. C.; BARRIOS‐O’NEILL, D. 2018. Frair: An R package for fitting and comparing consumer functional responses. Methods in Ecology and Evolution 8 (11): 1528-1534. https://doi.org/10.1111/2041-210X.12784

QUIROZ-MARTÍNEZ, H.; RODRÍGUEZ-CASTRO, V. A.; SOLÍS-ROJAS, C.; MALDONADO-BLANCO, M. G. 2005. Predatory capacity and prey selectivity of nymphs of the dragonfly Pantala hymenaea. Journal of the American Mosquito Control Association 21 (3): 328-330. https://doi.org/10.2987/8756-971X(2005)21[328:PCAPSO]2.0.CO;2

R CORE TEAM. 2018. A language and environment for statistical computing. [Internet]. Vienna, Austria: R Foundation for Statistical Computing. Disponible en: https://www.R-project.org/.

REITER, P.; AMADOR, M. A.; COLON, N. 1991. Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. Journal of the American Mosquito Control Association 7 (1): 52-55.

REQUENA-ZUÑIGA, E.; MENDOZA-URIBE, L.; GUEVARA-SARAVIA, M. 2016. Nuevas áreas de distribución de Aedes aegypti en Perú. Revista Peruana de Medicina Experimental y Salud Pública 33 (1): 171-172. https://doi.org/10.17843/rpmesp.2016.331.1804

ROBERTS, D. 2014. Mosquito larvae change their feeding behavior in response to kairomones from some predators. Journal of Medical Entomology 51 (2): 368-374. https://doi.org/10.1603/ME13129

SALVATELLA-AGRELO, R. 1996. Aedes aegypti, Aedes albopictus (Diptera, Culicidae) y su papel como vectores en las Américas. La situación de Uruguay. Revista Médica del Uruguay 12: 28-36.

SIMBERLOFF, D.; GIBBONS, L. 2004. Now you See them, Now you don’t! – Population Crashes of Established Introduced Species. Biological Invasions 6 (2): 161-172. https://doi.org/10.1023/B:BINV.0000022133.49752.46

SMITH, R. L.; SMITH, T. M. 2009. Ecologia. Sexta edición. Pearson Education. España. 681 p.

YÁÑEZ, P.; MAMANI, E.; VALLE, J.; GARCÍA, M. P.; LEÓN, W.; VILLASECA, P.; TORRES, D.; CABEZAS, C. 2014. Variabilidad genética del Aedes aegypti determinada mediante el análisis del gen mitocondrial ND4 en once áreas endémicas para dengue en el Perú. Revista Peruana de Medicina Experimental y Salud Pública 30 (2): 246-250. https://doi.org/10.17843/rpmesp.2013.302.199

Downloads

Download data is not yet available.
Received 2020-08-19
Accepted 2021-03-03
Published 2021-07-22

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.