Main Article Content

Authors

Meliboeus ohbayashii primoriensis (Coleoptera: Buprestidae) is an important pest of the walnut tree Juglans regia (Juglandaceae), but the volatiles mediating this plant–herbivore interaction are unknown. In this study, volatiles emitted by healthy J. regia and by plants infested with M. ohbayashii primoriensis (Coleoptera: Buprestidae) were obtained by a dynamic headspace method and analyzed by gas chromatography-mass spectrometry (Shanxi, China). We identified 26 major compounds and compared the volatile composition of healthy and buprestid-infected J. regia. Green leaf volatiles were detected in all damaged plants, including the monoterpenoids β-phellandrene and (E)-β-ocimene, the sesquiterpenoids (-)-β-bourbonene, β-ylangene, and (E,E)-α-farnesene, the alcohols linalool, myrtenol, and (E)-(-)-pinocarveol, the ketones (E)-pinocamphone and (Z)-pinocamphone, and the ester methyl salicylate. The major volatiles detected in healthy plants were β-pinene (36.26 %), α-pinene (23.81 %), D-limonene (12.03 %), sabinene (8.63 %), and β-myrcene (4.35 %). The main volatiles from M. ohbayashii primoriensis larva-infested plants were β-pinene (37.82 %), α-pinene (20.36 %), D-limonene (14.71 %), germacrene D (5.24 %), sabinene (4.52 %), and β-phellandrene (3.80 %). These results enrich our understanding of volatiles of healthy plants and plants infested with M. ohbayashii primoriensis. Furthermore, they provide a theoretical basis and scientific foundation for integrated pest management and for effective ecologically sustainable pest control strategies.

Cui, Y., Kong, S., Liu, X., & Liu, S. (2020). Comparison of the volatiles composition between healthy and buprestid infected Juglans regia (Juglandaceae). Revista Colombiana De Entomología, 46(1), 1–5. https://doi.org/10.25100/socolen.v46i1.8649

AMENT, K.; KRASIKOV, V.; ALLMANN, S.; REP, M.; TAKKEN, F. L.W.; SCHUURINK, R. C. 2010. Methyl salicylate production in tomato affects biotic interactions. Plant Journal 62 (1): 124-134. https://doi.org/10.1111/j.1365-313X.2010.04132.x

ABDALLAH, I. B.; TLILI, N.; MARTINEZ-FORCE, E.; RUBIO, A. G. P.; PEREZ-CAMINO, M. C.; ALBOUCHI, A. L. I., BOUKHCHINA, S. 2015. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chemistry 173: 972-978. https://doi.org/10.1016/j.foodchem.2014.10.095

ABDALLAH, I. B.; BAATOUR, O.; MECHRGUI, K.; HERCHI, W.; ALBOUCHI, A.; CHALGHOUM, A.; BOUKHCHINA, S. 2016. Essential oil composition of walnut tree (Juglans regia L.)’ leaves from Tunisia. Journal of Essential Oil Research 28 (6): 545-550. https://doi.org/10.1080/10412905.2016.1166157

BÄCKMAN, A. C.; BENGTSSON, M.; BORG-KARLSSON, A. K.; LIBLIKAS, I.; WITZGALL, P. 2001. Volatiles from apple (Malus domestica) eliciting antennal responses in female codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae): effect of plant injury and sampling technique. Zeitschrift für Naturforschung C 56 (3-4): 262-268. https://doi.org/10.1515/znc-2001-3-415

CHEN, C.; LI, X. Q.; YANG, M. X.; GUO, X. X. 2015. Investigation of pests and control technologies of major pests of Juglans regiain Shaanxi. Journal of Agriculture 5 (9): 64-68. http://en.cnki.com.cn/Article_en/CJFDTotal-XKKJ201509014.htm

DAVIES, N. W. 1990. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. Journal of Chromatography A 503 (503): 1-24. https://doi.org/10.1016/S0021-9673(01)81487-4

DICKE, M. 1994. Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism. Journal of Plant Physiology 143 (4-5): 465-472. https://doi.org/10.1016/S0176-1617(11)81808-0

FARAG, M. A. 2008. Headspace analysis of volatile compounds in leaves from the Juglandaceae (Walnut) family. Journal of Essential Oil Research 20 (4): 323-327. https://doi.org/10.1080/10412905.2008.9700023GANDEV, S. 2007. Budding and grafting of the walnut (Juglans regia L.) and their effectiveness in Bulgaria (Review). Bulgarian Journal of Agricultural Science 13 (6): 683-689. https://www.researchgate.net/publication/268187454

GERSHENZON, J.; DUDAREVA, N. 2007. The function of terpene natural products in the natural world. Nature chemical biology 3 (7): 408-414. https://doi.org/10.1038/nchembio.2007.5

GISH, M.; DE MORAES, C. M.; MESCHER, M. C. 2015. Herbivore-induced plant volatiles in natural and agricultural ecosystems: open questions and future prospects. Current Opinion in Insect Science 9: 1-6. https://doi.org/10.1016/j.cois.2015.04.001

GRANT, G. G; RYALL, K. L.; LYONS, D. B.; ABOU-ZAID, M. M. 2010. Differential response of male and female emerald ash borers (Col., Buprestidae) to (Z)-3-hexenol and manuka oil. Journal of Applied Entomology 134 (1): 26-33. https://doi.org/10.1111/j.1439-0418.2009.01441.x

GROOT, P. D.; GRANT, G. G.; POLAND, T. M.; SCHARBACH, R.; BUCHAN, L.; NOTT, R. W.; MACDONALD, L.; PITT, D. 2008. Electrophysiological response and attraction of emerald ash borer to green leaf volatiles (GLVs) emitted by host foliage. Journal of Chemical Ecology34 (9): 1170-1179. https://doi.org/10.1007/s10886-008-9514-3

HARDIE, J.; ISAACS, R.; PICKETT, J. A.; WADHAMS, L. J.; WOODCOCK, C. M. 1994. Methyl salicylate and (-)-(1R, 5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop (Homoptera: Aphididae). Journal of Chemical Ecology 20 (11): 2847-2855. https://doi.org/10.1007/BF02098393

HEIL, M.; TON, J. 2008. Long-distance signaling in plant defence. Trends in Plant Science 13 (6): 264-272. https://doi.org/10.1016/j.tplants.2008.03.005

HILTPOLD, I.; TOEPFER, S.; KUHLMANN, U.; TURLINGS, T. C. J. 2010. How maize root volatiles affect the efficacy of entomopathogenic nematodes in controlling the western corn rootworm? Chemoecology 20 (2): 155-162. https://doi.org/10.1007/s00049-009-0034-6

JAMES, D. G. 2003. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing, Chrysopa nigricornis. Journal of Chemical Ecology 29 (7): 1601-1609. https://doi.org/10.1023/A:1024270713493

KESSLER, A.; BALDWIN, T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291 (5511): 2141-2144. https://doi.org/10.1126/science.291.5511.2141

MA, L. H.; QIN, W. D.; MIAO, J. Z. 2006. Study on a milk beverage of walnut and hawthorn. Food Research and Development 27 (5): 90-92. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SPYK200604031.htm

MAUCK, K. E.; DE MORAES, C. M.; MESCHER, M. C. 2010. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Sciences of the United States 107 (8): 3600-3605. https://doi.org/10.1073/pnas.0907191107

METCALF, R. L.; KOGAN, M. 1987. Plant volatiles as insect attractants. Critical Reviews in Plant Sciences 5 (3): 251-301. https://doi.org/10.1080/07352688709382242

MUMM, R.; HILKER, M. 2006. Direct and indirect chemical defence of pine against folivorous insects. Trends in Plant Science11 (7): 351-358. https://doi.org/10.1016/j.tplants.2006.05.007

MUSETTI, L.; NEAL, J. J. 1997. Toxicological effects of Lycopersicon hirsutum f. glabratum and behavioral Response of Macrosiphum euphorbiae. Journal of Chemical Ecology 23 (5): 1321-1332. https://doi.org/10.1023/B:JOEC.0000006466.63606.0d

NING, T.; FAN, J. T.; FANG, Y. L.; SUN, J. H. 2006. Changes in contents of host Volatile terpenes under different damaged states and electroantennogram response of Monochamus alternatusHope to these volatiles. Acta Entomologica Sinica 49 (2): 179-188. http://en.cnki.com.cn/article_en/cjfdtotal-kcxb200602002.htm

NOTTINGHAM, S. F.; HARDIE, J.; DAWSON, G. W.; HICK, A. J.; PICKETT, J. A.; WADHAMS, L. J.; WOODCOCK, C. M. 1991. Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. Journal of Chemical Ecology 17 (6): 1231-1242. https://doi.org/10.1007/BF01402946

RAMADAN, A.; MUROI, A.; ARIMURA, G. 2011. Herbivore-induced maize volatiles serve as priming cues for resistance against post-attack by the specialist armyworm Mythimna Revista Colombiana de Entomología 2020, 46 (1): e8649 • Yaqin Cui et al. 4/5 separata. Journal of Plant Interactions 6 (2-3): 155-158. https://doi.org/10.1080/17429145.2010.544775

RODRIGUEZ-SAONA, C.; POLAND, T. M.; MILLER J, R.; STELINSKI, L. L.; GRANT, G. G.; GROOT, P. D.; BUCHAN, L; MACDONAL, L. 2006. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus manchurica. Chemoecology 16 (2): 75-86. https://doi.org/10.1007/s00049-005-0329-1

ROMÁN, I. S.; BARTOLOMÉ, L.; GEE, W. S.; ALONSO, R. M.; BECK, J. J. 2015. Comparison of ex situ volatile emissions from intact and mechanically damaged walnuts. Food Research International 72: 198-207. https://doi.org/10.1016/j.foodres.2015.04.009

RYALL, K. L.; SILK, P. J.; MAYO, P.; CROOK, D.; KHRIMIAN, A.; COSSÉ, A. A.; SWEENEY, J.; SCARR, T. 2012. Attraction of Agrilus planipennis (Coleoptera: Buprestidae) to a volatile pheromone: effects of release rate, host volatile, and trap placement. Environmental Entomology 41 (3): 648-656. https://doi.org/10.1603/EN11312

RYALL, K. L.; FIDGEN, J. G.; SILK, P. J.; SCARR, T. A. 2013. Efficacy of the pheromone (3Z)-lactone and the host kairomone (3Z)-hexenol at detecting early infestation of the emerald ash borer, Agrilus planipennis. Entomology Experimentalis et Applicata 147 (2): 126-131. https://doi.org/10.1111/eea.12052

SARLES, L.; BOULLIS, A.; FASSOTTE, B.; LOGNAY, G.; VERHAEGHE, A.; FRANCIS, F.; VERHEGGEN, F. J. 2017. Identification of walnut husk (Juglans regia L.) volatiles and the behavioural response of the invasive walnut Husk Fly, Rhagoletis completa Cresson. Pest Management Science 73 (10): 2100-2104. https://doi.org/10.1002/ps.4584

TAMIRU, A.; BRUCE, T. J.; MIDEGA, C. A.; WOODCOCK, C. M.; BIRKETT, M. A.; PICKETT, J. A.; KHAN, Z. R. 2012. Oviposition induced volatile emissions from African smallholder farmers’ maize varieties. Journal of Chemical Ecology 38 (3): 231-234. https://doi.org/10.1007/s10886-012-0082-1

TURLINGS, T. C. J.; BENREY, B. 1998. Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience 5 (3): 321-333. https://doi.org/10.1080/11956860.1998.11682472

WANG, K. J.; HAO, Y. B.; YANG, C. M.; QI, J. X. 2006. The polyphenols in the walnut fruit and the produce to make walnut wine. Academic Periodical of Farm Products Processing 1: 46-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncqjg-xk200601016

WANG, K.; LIU, L. J.; CAI, W. D. 2015. Summary of related research on insect attack of Walnut in China. Journal of Green Science and Technology (4): 68-73. http://en.cnki.com.cn/Article_en/CJFDTotal-LVKJ201504031.htm

WANG, R.; LI, Q. S. 1993. Walnut insect pests of Shanxi and their countermeasure control. Journal of Shanxi University (Nat. Sci. Ed.) 16 (1): 107-111. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXDR199301022.htm

WANG, X. Y; CAO, L. M; YANG, Z. Q. 2018. Revision of scientific names and re-description of five important buprestid species (Coleoptera: Buprestidae) in China. Acta Entomologica Sinica 61 (10): 1202-1211. http://en.cnki.com.cn/Article_en/CJFDTotal-KCXB201810010.htm

XU, Z. H.; TAN, J. H.; ZHANG, X.; WANG, L.; LI, W. Y. 2006. Study on the extraction of natural food coloring matter from walnut outer peel and its physical-chemical properties. Journal of Sichuan Normal University 29 (4): 488-490. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCSD200604026.htm

YANG, H.; YANG, W.; YANG, M. F.; YANG, C. P.; ZHU, T. H.; HUANG, Q. 2011. Effects of plant volatiles on the EAG and behavioral responses of Batocera horsfieldi Hope (Coleoptera: Cerambycidae). Journal of Agricultural and Urban Entomology 27 (1): 20-32. https://doi.org/10.3954/10-18.1

ZHOU, Y. Y.; LV, B. 2006. Study on the walnut milk. Food Science and Technology 2: 69-72. http://xueshu.baidu.com/usercenter/paper/show?paperid=54f27850153213be14a303f6825b5950&site=xueshu_se

Downloads

Download data is not yet available.

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.