Main Article Content

Authors


One of the most widespread media in the field of marketing for promoting products, services, and brands is advertising jingles; they are advertising messages made into songs. Their lyrics and music have been created to promote an advertisement or campaign. Thus, advertising jingles benefit from the advantages provided by music to generate positive emotions in potential customers, in addition to the ability to remember a product or brand. Given the few works that focus on the musical and emotional study of advertising jingles, this article explores the advantages provided by affective computing for the study of the emotionality of the music in a set of popular advertising jingles from the ‘80s and ‘90s, considering the acoustic properties of excitation and valence. A tool, called ANEMA (Analyzer of Emotions in Advertising Jingles), was developed to achieve this; it allows the segmentation of an audio track into different fragments where the acoustic properties of arousal and valence are extracted. This in turn allows determining the emotion associated with each fragment within the circumflex model or Russell´s five emotions model (happiness, excitement, anger, sadness, and relaxation) using the trigonometric relationship of acoustic properties. This study aims at serving as a reference regarding the design and evaluation of musical content associated with advertising jingles to stimulate the development of specific emotions in potential clients.

Gabriel Elías Chanchí Golondrino, Universidad de Cartagena

Assistant Professor, Systems Engineering Department, Faculty of Engineering, Universidad de Cartagena Cartagena, Colombia. Electronics and Telecommunications Engineer, Doctor in Telematic Engineering, Universidad del Cauca, Colombia.

Manuel Alejandro Ospina Alarcón, Universidad de Cartagena

Assistant Professor, Systems Engineering Department, Faculty of Engineering, Universidad de Cartagena Cartagena, Colombia. Control Engineer, Doctor in Engineering – Science and Technology of Materials, Universidad Nacional de Colombia, Medellín, Colombia.

Martín Emilio Monroy Ríos, Universidad de Cartagena

Associate Professor, Systems Engineering Department, Faculty of Engineering, Universidad de Cartagena Cartagena, Colombia. Systems Engineer, Technical University of Kirguizia, URSS, Doctor in Telematic Engineering, Universidad del Cauca, Colombia.

Chanchí Golondrino, G. E., Ospina Alarcón, M. A., & Monroy Ríos, M. E. (2022). Analysis of advertising jingles from the ‘80s and ‘90s through affective computing. Cuadernos De Administración, 38(73), e2011153. https://doi.org/10.25100/cdea.v38i73.11153

Bai, J., Jun, P., Jinliang, S., Dedong, T., Ying, W., Jianqing, L., & Kan, L. (22-23 August, 2016). Dimensional Music Emotion Recognition by Valence-Arousal Regression (pp. 42-49). in Proceedings of 2016 IEEE 15th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC. Institute of Electrical and Electronics Engineers Inc., Palo Alto, CA, USA. https://doi.org/10.1109/ICCI-CC.2016.7862063 DOI: https://doi.org/10.1109/ICCI-CC.2016.7862063

Baldasarri, S. (2016). Computación Afectiva: Tecnología y Emociones Para Mejorar La Experiencia de Usuario. Revista Institucional de La Facultad de Informática - UNLP (3), 14-15. https://core.ac.uk/download/pdf/296386645.pdf

Brown, S., Ulrik, V. (2006). Musica and Manipulation On the Social Users and Social Control Music. Berghahn Books.

Chanchí, G., Córdoba, A. (2019). Análisis de Emociones y Sentimientos Sobre El Discurso de Firma Del Acuerdo de Paz En Colombia. Revista Ibérica de Sistemas e Tecnologias de Informação, E22, 95-107. http://risti.xyz/issues/ristie22.pdf

Espinosa Mirabet, S. (19-21 May, 2012). Análisis de Un Jingle Icónico ¿Por Qué Cuesta Tanto Crear Otro ‘Negrito de Cola-Cao’? (pp. 25-39). in Congreso Publiradio, Barcelona, España. https://dugi-doc.udg.edu/bitstream/handle/10256/10708/Analisis-jingle-iconico.pdf?sequence=1

Florian, E., Wöllmer, M., & Schuller, B. (10-12 September, 2009). OpenEAR - Introducing the Munich Open-Source Emotion and Affect Recognition Toolkit (pp. 1-6). in Proceedings of 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops. ACII, Amsterdam, Netherlands. https://doi.org/10.1109/ACII.2009.5349350 DOI: https://doi.org/10.1109/ACII.2009.5349350

Fernández Gómez, J. D. (2005). Aproximación Tipológica a La Música En Publicidad: De La Identidad Sonora Corporativa a La Comercialización de La Canción Publicitaria. Questiones Publicitarias, 1(10), 53-76. https://questionespublicitarias.es/article/view/v10-fernandez/160-pdf-es DOI: https://doi.org/10.5565/rev/qp.160

Gillanders, C., Guillen, A. (2012). Música y Publicidad En El Aula de Secundaria. Revista Educativa Hekademos 12, 105-114. https://dialnet.unirioja.es/servlet/articulo?codigo=4162005

Hammal, Z., Suarez, M. (2-5 September, 2013). Towards Context Based Affective Computing (pp. 802-802). in Proceedings of 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. ACII, Geneva, Switzerland. https://doi.org/10.1109/ACII.2013.149 DOI: https://doi.org/10.1109/ACII.2013.149

Hargreaves, D., North, A. (2005). The Social Psychology of Music. Oxford University Press.

Jiang, J., Rickson, D., & Jiang, C. (2016). The Mechanism of Music for Reducing Psychological Stress: Music Preference as a Mediator. Arts in Psychotherapy 48, 62-68. https://doi.org/10.1016/j.aip.2016.02.002 DOI: https://doi.org/10.1016/j.aip.2016.02.002

Juca Maldonado, J., Garcia Saltos, M. B., & Burgo Bencomo, O. (2018). La Computación Afectiva y Su Influencia En Las Interfaces Actuales Del Reconocimiento Facial. Revista Metropolitana de Ciencias Aplicadas 1(2), 28-35. https://remca.umet.edu.ec/index.php/REMCA/article/view/23/pdf_1

Kabadayi, A. (2014). Contributions of the ‘Counting Jingles’ to Children in Plays from Teachers’ Perspectives. Procedia - Social and Behavioral Sciences, 143, 458-62. https://doi.org/10.1016/j.sbspro.2014.07.517 DOI: https://doi.org/10.1016/j.sbspro.2014.07.517

Kim, J., Lee, S., Kim, S., & Yoo, W. Y. (13-16 Febrary, 2011). Music Mood Classification Model Based on Arousal-Valence Values (pp. 292-295). in 13th International Conference on Advanced Communication Technology. ICACT., Gangwon, Korea (South). https://ieeexplore.ieee.org/document/5745796

López, A. (2017). La Efectividad de Los Jingles y Su Poder de Recordación. Razón y Palabra, 21(4_99), 197-211. https://www.revistarazonypalabra.org/index.php/ryp/article/view/1086/1080

López Giraldo, A. (2-4 November, 2016). Los Jingles Originales Más Recordados Por Los Bogotanos En La Década de Los Ochenta, y Su Efectividad (pp. 1-5). in Humanidades digitales, diálogo de saberes y prácticas colaborativas en red. Cátedra UNESCO de comunicación, Bogotá, Colombia. https://www.javeriana.edu.co/unesco/humanidadesDigitales/ponencias/pdf/IV_02.pdf

Malheiro, R., Panda, R., Gomes, P., & Paiva, R. P. (2018). Emotionally-Relevant Features for Classification and Regression of Music Lyrics. IEEE Transactions on Affective Computing, 9(2), 240-254. https://doi.org/10.1109/TAFFC.2016.2598569 DOI: https://doi.org/10.1109/TAFFC.2016.2598569

Naser, D. S., Saha, G. (2021). Influence of Music Liking on EEG Based Emotion Recognition. Biomedical Signal Processing and Control, 64, 102251. https://doi.org/10.1016/j.bspc.2020.102251 DOI: https://doi.org/10.1016/j.bspc.2020.102251

Nomura, T., Mitsukura, Y. (2015). EEG-Based Detection of TV Commercials Effects. Procedia Computer Science, 60(1), 131-140. https://doi.org/10.1016/j.procs.2015.08.112 DOI: https://doi.org/10.1016/j.procs.2015.08.112

Palencia-Lefler, M. (2009). La Música En La Comunicación Publicitaria. Comunicación y Sociedad, 22(2), 89-108. https://revistas.unav.edu/index.php/communication-and-society/article/view/36260/30744 DOI: https://doi.org/10.15581/003.22.36260

Paltoglou, G., Thelwall, M. (2013). Seeing Stars of Valence and Arousal in Blog Posts. IEEE Transactions on Affective Computing, 4(1), 116-123. https://doi.org/10.1109/T-AFFC.2012.36 DOI: https://doi.org/10.1109/T-AFFC.2012.36

Porras, N. (2017). Análisis de Los Procesos Psicológicos de Percepción y Memoria En La Efectividad de Los Jingles Publicitarios. Revista de Comunicación y Salud, 7, 49-60. http://revistadecomunicacionysalud.org/index.php/rcys/article/view/120 DOI: https://doi.org/10.35669/revistadecomunicacionysalud.2017.7(1).49-60

Porras Velázquez, N. R. (2018). Percepción y Memoria En Los Jingles Publicitarios: Reflexiones Desde La Psicología de La Publicidad. Revista Electrónica Psyconex, 10(16), 1-19. https://revistas.udea.edu.co/index.php/Psyconex/article/view/334761

Rubio-Romero, J., Perlado-Lamo de Espinosa M., y Ramos- Rodriguez, M. (2019). La Música En La Publicidad Que Atrae a Los Jóvenes. Anuario Electrónico de Estudios en Comunicación Social “Disertaciones”, 12(2), 97-124. https://doi.org/10.12804/revistas.urosario.edu.co/disertaciones/a.6537 DOI: https://doi.org/10.12804/revistas.urosario.edu.co/disertaciones/a.6537

Rudovic, O. O. (28-30 November, 2016). Machine Learning for Affective Computing and Its Applications to Automated Measurement of Human Facial Affect (pp. 1-1). in 2016 International Symposium on Micro-NanoMechatronics and Human Science (MHS). Institute of Electrical and Electronics Engineers Inc., Nagoya, Japan. https://doi.org/10.1109/mhs.2016.7824242 DOI: https://doi.org/10.1109/MHS.2016.7824242

Sánchez-Porras, M. J. (2013). La Persuasión de La Música En La Publicidad. El Ejemplo Coca Cola. Revista Historia y Comunicación Social, 18, 349-57. https://doi.org/10.5209/rev_HICS.2013.v18.44333 DOI: https://doi.org/10.5209/rev_HICS.2013.v18.44333

Sánchez-Porras, M. J. (2016). Música y Persuasión Publicitaria. Revista Opción, (12), 589-608. https://www.produccioncientificaluz.org/index.php/opcion/article/view/22064

Sánchez-Porras, M. J., & Rodrigo, E. (2017). Emotional Benefits of Coca-Cola Advertising Music. Procedia - Social and Behavioral Sciences, 237, 1444-1448. https://doi.org/10.1016/j.sbspro.2017.02.227 DOI: https://doi.org/10.1016/j.sbspro.2017.02.227

Sánchez, V. (2015). Música y Publicidad. Una Aproximación Metodológica Al Análisis Músico-Audiovisual de Anuncios Televisivos. Revista de Comunicación Vivat Academia, 133, 86-101. https://doi.org/10.15178/va.2015.133.86-101 DOI: https://doi.org/10.15178/va.2015.133.86-101

Sharma, H., Gupta, S., Sharma, Y., & Purwar, A. (5-7 March, 2020). A New Model for Emotion Prediction in Music (pp. 156-161). in 2020 6th International Conference on Signal Processing and Communication, ICSC. Institute of Electrical and Electronics Engineers Inc., Noida, India. https://doi.org/10.1109/ICSC48311.2020.9182745 DOI: https://doi.org/10.1109/ICSC48311.2020.9182745

Shevy, M., Hung, K. (2013). Music in Television Advertising and Other Persuasive Media in Oxford University Press, The psychology of music in multimedia (1 ed1. Vol. 1, pp. 315-338). Oxford Scholarship. DOI: https://doi.org/10.1093/acprof:oso/9780199608157.003.0014

Solarte, L. A., Sánchez, M., Chanchí, G. E., Durán, D. F., y Arciniegas J. L. (2016a). Dataset de Contenidos Musicales de Video, Basado En Emociones. Ingenierías USBMed, 7(1), 37-46. https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2460/2247 DOI: https://doi.org/10.21500/20275846.2460

Solarte, L. A., Sánchez, M., Chanchí, G. E., Durán, D. F., & Arciniegas J. L. (2016b). Video on Demand Service Based on the Inference of Emotions User. Sistemas y Telemática, 14(38), 31-47. https://doi.org/10.18046/syt.v14i38.2286 DOI: https://doi.org/10.18046/syt.v14i38.2286

Downloads

Download data is not yet available.
Received 2021-04-14
Accepted 2021-11-22
Published 2022-05-12

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.