Contenido principal del artículo

Autores

La contaminación del aire es uno de los graves problemas para el medio ambiente y la salud de la sociedad. La evaluación del riesgo de contaminación del aire, las herramientas de evaluación de los efectos en la salud se utilizan para identificar el lugar y el momento de los efectos en la salud pública y las estrategias de prevención de riesgos para reducir los efectos negativos en la salud. Considerando que puede existir una relación entre los factores que afectan el riesgo, en este estudio se investigan las interacciones entre ellos utilizando la Prueba de Decisión Difusa y el Método de Evaluación Experimental (DEMATEL difuso). Con base en los resultados, las variables causantes en este sistema incluyen complejos industriales y puerto, sulfuro de hidrógeno, benceno, dióxido de azufre y PM10. Las variables de efecto en este sistema incluyen monóxido de carbono, ozono, hospitales y residencias de ancianos, dióxido de nitrógeno, densidad de población, PM2,5, escuelas, instalaciones industriales y de almacenamiento, carreteras, núcleos urbanos y zonas naturales, agricultura y vías fluviales. La causa del riesgo de contaminación del aire para la salud en una zona industrial es la actividad de los complejos industriales y portuarios y la presencia de sulfuro de hidrógeno, benceno, dióxido de azufre y PM10 y los efectos de estos factores afectarán la cantidad de monóxido de carbono, ozono, nitrógeno. dióxido y PM2.5. Los hospitales y residencias de ancianos, las escuelas, las instalaciones industriales y de almacenamiento, las carreteras, el núcleo urbano y las zonas naturales, la agricultura y las vías fluviales se ven afectados por otros factores. La densidad de población también se ve afectada por factores causales. Por lo tanto, al controlar la actividad de los complejos industriales, el puerto y las cantidades de sulfuro de hidrógeno, benceno, dióxido de azufre y PM10 en el aire ambiente se pueden evitar los efectos posteriores.

Fatemeh Sadat Alavipoor, University of Tehran

Universidad de Teherán, Facultad de Medio Ambiente, Departamento de Planificación, Gestión y Educación Ambiental

Saeed Karimi, University of Tehran

Universidad de Teherán, Facultad de Medio Ambiente, Departamento de Planificación, Gestión y Educación Ambiental

Hamidreza Jafari, University of Tehran

Universidad de Teherán, Facultad de Medio Ambiente, Departamento de Planificación, Gestión y Educación Ambiental

Mohammad Sadegh Hassanvand, Tehran University of Medical Sciences

Associate Professor, Tehran University of Medical Sciences, School of Public Health, Department of Environmental Health Engineering, Tehran, Iran Center for air pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.

Mahdi Tanha Ziyarati, National Iranian Oil Company

Assistant Professor, Department of health, safety and environment, Ferdous Rahjoyan Danesh Higher.

Alavipoor, F. S., Karimi, S., Jafari, H., Hassanvand, M. S., & Tanha Ziyarati, M. (2024). Relaciones causales del riesgo para la salud de la contaminación del aire en una zona industrial. Entorno Geográfico, (28), e24113697. https://doi.org/10.25100/eg.v0i28.13697

Agency for Toxic Substances and Disease Registry. (2009). Toxicological Profile for Carbon Monoxide. Agency for Toxic Substances and Disease Registry. https://tinyurl.com/4z6p9ddh

Agency for Toxic Substances and Disease Registry. (2016). Division of Toxicology and Human Health Sciences (DTHHS). Agency for Toxic Substances and Disease Registry. https://tinyurl.com/2raayej3

Ahmadi, O., Mortazavi, S. B., Mahabadi, H., & Hosseinpouri, M. (2020). Development of a dynamic quantitative risk assessment methodology using fuzzy DEMATEL-BN and leading indicators. Process Safety and Environmental Protection, 142, 15-44. https://doi.org/10.1016/j.psep.2020.04.038 DOI: https://doi.org/10.1016/j.psep.2020.04.038

Al-Hemoud, A., Al-Awadi, L., Al-Rashidi, M., Rahman, K., Al-Khayat, A., & Behbehani, W. (2017). Comparison of indoor air quality in schools: Urban vs. Industrial 'oil & gas' zones in Kuwait. Building and Environment, 122, 50-60. https://doi.org/10.1016/j.buildenv.2017.06.001 DOI: https://doi.org/10.1016/j.buildenv.2017.06.001

An, X., Hou, Q., Li, N., & Zhai, S. (2013). Assessment of human exposure level to PM10 in China. Atmospheric Environment, 70, 376-386. https://doi.org/10.1016/j.atmosenv.2013.01.017 DOI: https://doi.org/10.1016/j.atmosenv.2013.01.017

Annesi, I., Hulin, M., Lavaud, F., Raherison, C., Kopferschmitt, C., de Blay, F., Charpin, D., & Denis, C. (2012). Poor air quality in classrooms related to asthma and rhinitis in primary schoolchildren of the French 6 Cities Study. Thorax, 67(8), 682-688. https://doi.org/10.1136/thoraxjnl-2011-200391 DOI: https://doi.org/10.1136/thoraxjnl-2011-200391

Anwar, M., Shabbir, M., Tahir, E., Iftikhar, M., Saif, H., Tahir, A., Mustaza, M., Khokhar, M., Rehan, M., Aghbaslo, M., Tabatabaei, M., & Nizami, A. (2021). Emerging challenges of air pollution and particulate matter in China, India, and Pakistan and mitigating solutions. Journal of Hazardous Materials, 416, 125851. https://doi.org/10.1016/j.jhazmat.2021.125851 DOI: https://doi.org/10.1016/j.jhazmat.2021.125851

Apte, J., Brauer, M., Cohen, A., Ezzati, M., & Pope, C. (2018). Ambient PM2.5 Reduces Global and Regional Life Expectancy. Environmental Science & Technology Letters, 5(9), 546-551. https://doi.org/10.1021/acs.estlett.8b00360 DOI: https://doi.org/10.1021/acs.estlett.8b00360

Arashidani, K., Yoshikawa, M., Kawamoto, T., Matsuno, K., Kayama, F., & Kodama, Y. (1996). Indoor pollution from heating. Industrial Health, 34(3), 205-215. https://doi.org/10.2486/indhealth.34.205 DOI: https://doi.org/10.2486/indhealth.34.205

Bauwelinck, M., Chen, J., de Hoogh, K., Katsouyanni, K., Rodopoulou, S., Samoli, E., Andersen, Z., Atkinson, R., Casas, L., Deboosere, P., Demoury, C., Janssen, N., Klompmaker, J., Lefebvre, W., Mehta, A., Nawrot, T., Oftedal, B., Renzi, M., Stafoggia, M., Strak, M., Vandenheede, H., Vanpoucke, C., Nieuwenhuyse, A., Vienneau, D., Brunekreef, B., & Hoek, G. (2022). Variability in the association between long-term exposure to ambient air pollution and mortality by exposure assessment method and covariate adjustment: A census-based country-wide cohort study. Science of The Total Environment, 804, 150091. https://doi.org/10.1016/j.scitotenv.2021.150091 DOI: https://doi.org/10.1016/j.scitotenv.2021.150091

Bhat, T., Jiawen, G., & Farzaneh, H. (2021). Air Pollution Health Risk Assessment (AP-HRA), Principles and Applications. International Journal of Environmental Research and Public Health, 18(4), 1935. https://doi.org/10.3390/ijerph18041935 DOI: https://doi.org/10.3390/ijerph18041935

Belton, V., & Stewart, T. (2002). Multiple Criteria Decision Analysis. Springer. DOI: https://doi.org/10.1007/978-1-4615-1495-4

Bisdorff, R., Dias, L., Meyer, P., Mousseau, V., & Pirlot, M. (2015). Evaluation and Decision Models With Multiple Criteria: Case Studies. Springer. DOI: https://doi.org/10.1007/978-3-662-46816-6

Burke, A., Nayak, M., & Capelouto, J. (2015). Researchers find correlation between population density, carbon dioxide emissions. The Daily Free Press. https://tinyurl.com/eypajtmm

Carroll, R., Chen, R., George, E., Li, T., Newton, H., Schmiediche, H., & Wang, N. (1997). Ozone Exposure and Population Density in Harris County, Texas. Journal of the American Statistical Association, 92(438), 392-404. https://doi.org/10.1080/01621459.1997.10473988 DOI: https://doi.org/10.1080/01621459.1997.10473988

Cassar, N. (2013). Public perception on the state of air quality in Malta [Tesis de maestría, Universidad de Malta]. Repositorio Institucional Universidad de Malta. https://tinyurl.com/mtdkuwu4

Chaloulakou, A., & Mavroidis, I. (2002). Comparison of indoor and outdoor concentrations of CO at a public school. Evaluation of an indoor air quality model. Atmospheric Environment, 36(11), 1769-1781. https://doi.org/10.1016/S1352-2310(02)00151-6 DOI: https://doi.org/10.1016/S1352-2310(02)00151-6

Chamseddine, A., Alameddine, I., Hatzopoulou, M., & El-Fadel, M. (2019). Seasonal variation of air quality in hospitals with indoor–outdoor correlations. Building and Environment, 148, 689-700. https://doi.org/10.1016/j.buildenv.2018.11.034 DOI: https://doi.org/10.1016/j.buildenv.2018.11.034

Chan, J. (1996). The Analysis of PM10 Air pollution problem in Taiwan area. [Tesis de maestría no publicada]. Universidad de Malta.

Chan, K., Khorsandi, E., Liu, S., Baier, F., & Valks, P. (2021). Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method. Remote Sensing, 13(5), 969. https://doi.org/10.3390/rs13050969 DOI: https://doi.org/10.3390/rs13050969

Chriscaden, K., & Osseiran, N. (2016). Releases Country Estimates on Air Pollution Exposure and Health Impact. World Health Organization. https://tinyurl.com/um4bk6j8

Cinelli, M., Spada, M., Kim, W., Zhang, Y., & Burgherr, P. (2021). MCDA Index Tool: an interactive software to develop indices and rankings. Environment Systems and Decisions, 41(1), 82-109. https://doi.org/10.1007/s10669-020-09784-x DOI: https://doi.org/10.1007/s10669-020-09784-x

Clark, C. (1951). Urban Population Densities. Journal of the Royal Statistical Society. Series A (General), 114(4), 490-496. https://doi.org/10.2307/2981088 DOI: https://doi.org/10.2307/2981088

Clemente, Á., Yubero, E., Galindo, N., Crespo, J., Nicolás, J., Santacatalina, M., & Carratala, A. (2021). Quantification of the impact of port activities on PM10 levels at the port-city boundary of a mediterranean city. Journal of Environmental Management, 281, 111842. https://doi.org/10.1016/j.jenvman.2020.111842 DOI: https://doi.org/10.1016/j.jenvman.2020.111842

Cohen, J. (2021). Measuring the concentration of urban population in the negative exponential model using the Lorenz curve, Gini coefficient, Hoover dissimilarity index, and relative entropy. Demographic Research, 44, 1165-1184. https://doi.org/10.4054/DemRes.2021.44.49 DOI: https://doi.org/10.4054/DemRes.2021.44.49

Cooke, S., & Behrens, R. (2017). Correlation or cause? The limitations of population density as an indicator for public transport viability in the context of a rapidly growing developing city. Transportation Research Procedia, 25, 3003-3016. https://doi.org/10.1016/j.trpro.2017.05.229 DOI: https://doi.org/10.1016/j.trpro.2017.05.229

Cotton, D., Friswell, N., & Jenkins, D. (1971). The suppression of soot emission from flames by metal additives. Combustion and Flame, 17(1), 87-98. https://doi.org/10.1016/S0010-2180(71)80142-6 DOI: https://doi.org/10.1016/S0010-2180(71)80142-6

Crutzen, P. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society, 96(408), 320-325. https://doi.org/10.1002/qj.49709640815 DOI: https://doi.org/10.1002/qj.49709640815

Dalla, L., Rada, E., Ragazzi, M., & Caraviello, M. (2017). Smart monitoring of benzene through an urban mobile phone network. International Journal of Sustainable Development and Planning, 12(3), 552-558. https://doi.org/10.2495/SDP-V12-N3-552-558 DOI: https://doi.org/10.2495/SDP-V12-N3-552-558

De Donno, A., De Giorgi, M., Bagordo, F., Grassi, T., Idolo, A., Serio, F., Cretti, E., Feretti, D., Villarini, M., Moretti, M., Carducci, A., Verani, M., Bonetta, S., Pignata, C., Bonizzoni, S., Bonetti, A., Gelatti, U., & On behalf of the MAPEC_LIFE Study Group. (2018). Health Risk Associated with Exposure to PM(10) and Benzene in Three Italian Towns. International journal of environmental research and public health, 15(8), 1672. https://doi.org/10.3390/ijerph15081672

Diener, A., & Mudu, P. (2021). How can vegetation protect us from air pollution? A critical review on green spaces' mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. Science of The Total Environment, 796, 148605. https://doi.org/10.1016/j.scitotenv.2021.148605 DOI: https://doi.org/10.1016/j.scitotenv.2021.148605

Edokpolo, B., Yu, Q., & Connell, D. (2015). Health Risk Assessment for Exposure to Benzene in Petroleum Refinery Environments. International Journal of Environmental Research and Public Health, 12(1), 595-610. https://doi.org/10.3390/ijerph120100595 DOI: https://doi.org/10.3390/ijerph120100595

El-Sharkawy, M., & Noweir, M. (2014). Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia. Journal of family & community medicine, 21(1), 39-47. https://doi.org/10.4103/2230-8229.128778 DOI: https://doi.org/10.4103/2230-8229.128778

European Environment Agency. (2018). Air Quality in Europe: 2018 Report. European Environment Agency. https://tinyurl.com/ms49v5dw

Ezbakhe, F., & Pérez, A. (2021). Decision analysis for sustainable development: The case of renewable energy planning under uncertainty. European Journal of Operational Research, 291(2), 601-613. https://doi.org/10.1016/j.ejor.2020.02.037 DOI: https://doi.org/10.1016/j.ejor.2020.02.037

Fan, Z., & Lin, L. (2011). Exposure Science: Contaminant Mixtures. In J. Nriagu (Ed.), Encyclopedia of Environmental Health (pp. 645-656). Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00122-7 DOI: https://doi.org/10.1016/B978-0-444-52272-6.00122-7

Fazlzadeh, M., Rostami, R., Hazrati, S., & Rastgu, A. (2015). Concentrations of carbon monoxide in indoor and outdoor air of Ghalyun cafes. Atmospheric Pollution Research, 6(4), 550-555. https://doi.org/10.5094/APR.2015.061 DOI: https://doi.org/10.5094/APR.2015.061

Gaffin, J., Hauptman, M., Petty, C., Sheehan, W., Lai, P., Wolfson, J., Gold, D., Coull, B., Koutrakis, P., & Phipatanakul, W. (2018). Nitrogen dioxide exposure in school classrooms of inner-city children with asthma. Journal of Allergy and Clinical Immunology, 141(6), 2249-2255. https://doi.org/10.1016/j.jaci.2017.08.028 DOI: https://doi.org/10.1016/j.jaci.2017.08.028

Gilbert, N., Goldberg, M., Beckerman, B., Brook, J., & Jerrett, M. (2005). Assessing Spatial Variability of Ambient Nitrogen Dioxide in Montréal, Canada, with a Land-Use Regression Model. Journal of the Air & Waste Management Association, 55(8), 1059-1063. https://doi.org/10.1080/10473289.2005.10464708 DOI: https://doi.org/10.1080/10473289.2005.10464708

Glarborg, P. (2007). Hidden interactions—Trace species governing combustion and emissions. Proceedings of the Combustion Institute, 31(1), 77-98. https://doi.org/10.1016/j.proci.2006.08.119 DOI: https://doi.org/10.1016/j.proci.2006.08.119

Gourdji, S. (2018). Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec. Environmental Pollution, 241, 378-387. https://doi.org/10.1016/j.envpol.2018.05.053 DOI: https://doi.org/10.1016/j.envpol.2018.05.053

Greco, S., Ehrgott, M., & Figueira, J. (2016). Multiple Criteria Decision Analysis. Springer. https://doi.org/https://doi.org/10.1007/978-1-4939-3094-4 DOI: https://doi.org/10.1007/978-1-4939-3094-4

Guerreiro, C., Foltescu, V., & de Leeuw, F. (2014). Air quality status and trends in Europe. Atmospheric Environment, 98, 376-384. https://doi.org/10.1016/j.atmosenv.2014.09.017 DOI: https://doi.org/10.1016/j.atmosenv.2014.09.017

Gupta, H., & Barua, M. (2018). A grey DEMATEL-based approach for modeling enablers of green innovation in manufacturing organizations. Environmental Science and Pollution Research, 25, 9556-9578. https://doi.org/10.1007/s11356-018-1261-6 DOI: https://doi.org/10.1007/s11356-018-1261-6

Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., & Zhang, X. (2011). Analysis of the Relationship between O3, NO and NO2 in Tianjin, China. Aerosol and Air Quality Research, 11, 128-139. https://doi.org/10.4209/aaqr.2010.07.0055 DOI: https://doi.org/10.4209/aaqr.2010.07.0055

Hansen, P., & Devlin, N. (2019). Multi-Criteria Decision Analysis (MCDA) in Healthcare Decision-Making. Oxford Research Encyclopedias, Economics and Finance, 1-26 https://doi.org/10.1093/acrefore/9780190625979.013.98 DOI: https://doi.org/10.1093/acrefore/9780190625979.013.98

Harrison, R., Vu, T., Jafar, H., & Shi, Z. (2021). More mileage in reducing urban air pollution from road traffic. Environment International, 149, 106329. https://doi.org/10.1016/j.envint.2020.106329 DOI: https://doi.org/10.1016/j.envint.2020.106329

He, X., & Lin, Z. (2017). [Interactive Effects of the Influencing Factors on the Changes of Concentration Based on GAM Model]. Huan jing ke xue= Huanjing kexue, 38(1), 22-32. DOI: 10.13227/j.hjkx.201606061

Hien, P., Hangartner, M., Fabian, S., & Tan, P. (2014). Concentrations of NO2, SO2, and benzene across Hanoi measured by passive diffusion samplers. Atmospheric Environment, 88, 66-73. https://doi.org/10.1016/j.atmosenv.2014.01.036 DOI: https://doi.org/10.1016/j.atmosenv.2014.01.036

Hilboll, A., Richter, A., & Burrows, J. (2013). Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmos. Chem. Phys., 13(8), 4145-4169. https://doi.org/10.5194/acp-13-4145-2013 DOI: https://doi.org/10.5194/acp-13-4145-2013

Huang, S., Li, H., Wang, M., Qian, Y., Steenland, K., Caudle, W., Liu, Y., Sarnat, J., Papatheodorou, S., & Shi, L. (2021). Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Science of The Total Environment, 776, 145968. https://doi.org/10.1016/j.scitotenv.2021.145968 DOI: https://doi.org/10.1016/j.scitotenv.2021.145968

Igin, V., Filatov, Y., Sushchev, V., Zhukova, A., Mikhailichenko, A., & Levin, N. (2010). Formation and distribution of nitrogen oxides in the production of sulfuric acid by the contact method. Theoretical Foundations of Chemical Engineering, 44, 479-484. https://doi.org/10.1134/S0040579510040202 DOI: https://doi.org/10.1134/S0040579510040202

Izquierdo, R., Dos Santos, S., Borge, R., de la Paz, D., Sarigiannis, D., Gotti, A., & Boldo, E. (2020). Health impact assessment by the implementation of Madrid City air-quality plan in 2020. Environmental Research, 183, 109021. https://doi.org/10.1016/j.envres.2019.109021 DOI: https://doi.org/10.1016/j.envres.2019.109021

Jang, M., & Kamens, R. (2001). Characterization of Secondary Aerosol from the Photooxidation of Toluene in the Presence of NOx and 1-Propene. Environmental Science & Technology, 35(18), 3626-3639. https://doi.org/10.1021/es010676+ DOI: https://doi.org/10.1021/es010676+

Janke, K. (2014). Air pollution, avoidance behaviour and children's respiratory health: Evidence from England. Journal of Health Economics, 38, 23-42. https://doi.org/10.1016/j.jhealeco.2014.07.002 DOI: https://doi.org/10.1016/j.jhealeco.2014.07.002

Janssen, N., Brunekreef, B., Vliet, P., Aarts, F., Meliefste, K., Harssema, H., & Fischer, P. (2003). The relationship between air pollution from heavy traffic and allergic sensitization, bronchial hyperresponsiveness, and respiratory symptoms in Dutch schoolchildren. Environmental Health Perspectives, 111(12), 1512-1518. https://doi.org/doi:10.1289/ehp.6243 DOI: https://doi.org/10.1289/ehp.6243

Jarvis, D., Adamkiewicz, G., Heroux, M., Rapp, R., & Kelly, F. (2010). Nitrogen dioxide. In World Health Organization (Ed.), WHO Guidelines for Indoor Air Quality: Selected Pollutants (pp. 201-248). World Health Organization. https://tinyurl.com/ypmanahc

Jassbi, J., Mohamadnejad, F., & Nasrollahzadeh, H. (2011). A Fuzzy DEMATEL framework for modeling cause and effect relationships of strategy map. Expert Systems with Applications, 38(5), 5967-5973. https://doi.org/10.1016/j.eswa.2010.11.026 DOI: https://doi.org/10.1016/j.eswa.2010.11.026

Jeong, J., & Ramírez, Á. (2018). Development of a web graphic model with fuzzy-decision-making Trial and Evaluation Laboratory/Multi-criteria-Spatial Decision Support System (F-DEMATEL/MC-SDSS) for sustainable planning and construction of rural housings. Journal of Cleaner Production, 199, 584-592. https://doi.org/10.1016/j.jclepro.2018.07.227 DOI: https://doi.org/10.1016/j.jclepro.2018.07.227

Jia, H., Gao, S., Duan, Y., Fu, Q., Che, X., Xu, H., Wang, Z., & Cheng, J. (2021). Investigation of health risk assessment and odor pollution of volatile organic compounds from industrial activities in the Yangtze River Delta region, China. Ecotoxicology and Environmental Safety, 208, 111474. https://doi.org/10.1016/j.ecoenv.2020.111474 DOI: https://doi.org/10.1016/j.ecoenv.2020.111474

Jin, M., & Zhang, H. (2021). Investigating urban land dynamic change and its spatial determinants in Harbin city, China. European Journal of Remote Sensing, 54(2), 155-166. https://doi.org/10.1080/22797254.2020.1758964 DOI: https://doi.org/10.1080/22797254.2020.1758964

Jung, S., Kang, H., Sung, S., & Hong, T. (2019). Health risk assessment for occupants as a decision-making tool to quantify the environmental effects of particulate matter in construction projects. Building and Environment, 161, 106267. https://doi.org/10.1016/j.buildenv.2019.106267 DOI: https://doi.org/10.1016/j.buildenv.2019.106267

Kang, J., Yoon, D., & Bae, H. (2019). Evaluating the effect of compact urban form on air quality in Korea. Environment and Planning B: Urban Analytics and City Science, 46(1), 179-200. https://doi.org/10.1177/2399808317705880 DOI: https://doi.org/10.1177/2399808317705880

Keisler, J., & Linkov, I. (2014). Environment models and decisions. Environment Systems and Decisions, 34, 369-372. https://doi.org/10.1007/s10669-014-9515-4 DOI: https://doi.org/10.1007/s10669-014-9515-4

Kiani, R., & Standing, C. (2018). Cause and effect analysis of business intelligence (BI) benefits with fuzzy DEMATEL. Knowledge Management Research & Practice, 16(2), 245-257. https://doi.org/10.1080/14778238.2018.1451234 DOI: https://doi.org/10.1080/14778238.2018.1451234

Kiker, G., Bridges, T., Varghese, A., Seager, T., & Linkov, I. (2005). Application of multicriteria decision analysis in environmental decision making. Integrated Environmental Assessment and Management, 1(2), 95-108. https://doi.org/10.1897/IEAM_2004a-015.1 DOI: https://doi.org/10.1897/IEAM_2004a-015.1

Kim, D., Chin, M., Bian, H., Tan, Q., Brown, M., Zheng, T., You, R., Diehl, T., Ginoux, P., & Kucsera, T. (2013). The effect of the dynamic surface bareness on dust source function, emission, and distribution. Journal of Geophysical Research: Atmospheres, 118(2), 871-886. https://doi.org/10.1029/2012JD017907 DOI: https://doi.org/10.1029/2012JD017907

Kimmlingen, M. (2003). Modeling of Gasoline Emissions from Stationary and Mobile Sources at Port Everglades [Tesis de maestría, Florida Atlantic University]. ProQuest Florida Atlantic University. https://tinyurl.com/2p9xx8r4

Knowlton, K., Rosenthal, J., Hogrefe, C., Lynn, B., Gaffin, S., Goldberg, R., Rosenzweig, C., Civerolo, K., Ku, J., & Kinney, P. (2004). Assessing ozone-related health impacts under a changing climate. Environmental health perspectives, 112(15), 1557-1563. https://doi.org/10.1289/ehp.7163 DOI: https://doi.org/10.1289/ehp.7163

Kopar, İ., & Zengin, M. (2009). Coğrafi faktörlere bağlı olarak Erzurum kentinde hava kalitesinin zamansal ve mekânsal değişiminin belirlenmesi. Türk Coğrafya Dergisi, (53), 51-69. https://tinyurl.com/yyxdphja

Kovač, E., Radanović, T., Topalović, I., Marković, B., & Sakač, N. (2013). Temporal Variations in Concentrations of Ozone, Nitrogen Dioxide, and Carbon Monoxide at Osijek, Croatia. Advances in Meteorology, 2013, 469786. https://doi.org/10.1155/2013/469786 DOI: https://doi.org/10.1155/2013/469786

Lafond, A. (2022). Difference Between Ozone and Particle Pollution for Asthma. Foobot. https://tinyurl.com/mtmaexxa

Lahdelma, R., Salminen, P., & Hokkanen, J. (2000). Using Multicriteria Methods in Environmental Planning and Management. Environmental Management, 26, 595-605. https://doi.org/10.1007/s002670010118 DOI: https://doi.org/10.1007/s002670010118

Lamsal, L., Martin, R., Parrish, D., & Krotkov, N. (2013). Scaling Relationship for NO2 Pollution and Urban Population Size: A Satellite Perspective. Environmental Science & Technology, 47(14), 7855-7861. https://doi.org/10.1021/es400744g DOI: https://doi.org/10.1021/es400744g

Lawton, S. (1989). The effect of sulfur dioxide on soot and polycyclic aromatic hydrocarbon formation in premixed ethylene flames. Combustion and Flame, 75(2), 175-181. https://doi.org/10.1016/0010-2180(89)90095-3 DOI: https://doi.org/10.1016/0010-2180(89)90095-3

Lee, H., Lee, K., & Kim, D. (2020). Evaluation and comparison of the indoor air quality in different areas of the hospital. Medicine, 99(52), e23942. https://doi.org/10.1097/MD.0000000000023942 DOI: https://doi.org/10.1097/MD.0000000000023942

Lelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M., Daiber, A., & Münzel, T. (2019). Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. European Heart Journal, 40(20), 1590-1596. https://doi.org/10.1093/eurheartj/ehz135 DOI: https://doi.org/10.1093/eurheartj/ehz135

Levy, A., & Ambrose, C. (1959). The high temperature reaction between sulfur dioxide and benzene. Journal of the American Chemical Society, 81(1), 249. https://doi.org/10.1021/ja01510a062 DOI: https://doi.org/10.1021/ja01510a062

Li, N., Jiang, Q., Wang, F., Xie, J., Li, Y., Li, J., & Wu, S. (2020). Emission behavior, environmental impact and priority-controlled pollutants assessment of volatile organic compounds (VOCs) during asphalt pavement construction based on laboratory experiment. Journal of Hazardous Materials, 398, 122904. https://doi.org/10.1016/j.jhazmat.2020.122904 DOI: https://doi.org/10.1016/j.jhazmat.2020.122904

Li, S., Liu, R., Wang, S., & Chen, S. (2021). Radiative Effects of Particular Matters on Ozone Pollution in Six North China Cities. Journal of Geophysical Research: Atmospheres, 126(24), e2021JD035963. https://doi.org/10.1029/2021JD035963 DOI: https://doi.org/10.1029/2021JD035963

Lin, C., & Wu, W. (2008). A causal analytical method for group decision-making under fuzzy environment. Expert Systems with Applications, 34(1), 205-213. https://doi.org/10.1016/j.eswa.2006.08.012 DOI: https://doi.org/10.1016/j.eswa.2006.08.012

Lin, C., Chiang, M., & Lin, C. (2016). Empirical Model for Evaluating PM10 Concentration Caused by River Dust Episodes. International Journal of Environmental Research and Public Health, 13(6), 553. https://doi.org/10.3390/ijerph13060553 DOI: https://doi.org/10.3390/ijerph13060553

Lin, H. (2013). Characteristics and re-suspension evaluation of river fugitive dust—a field study in Chunghua county [Tesis de maestria no publicada]. Chung Shan Medical University.

Liu, C., Zhang, X., Wang, Q., & Shi, K. (2019). Role of PM2.5 in the photodegradation of the atmospheric benzene. Environmental Pollution, 247, 447-456. https://doi.org/10.1016/j.envpol.2019.01.020 DOI: https://doi.org/10.1016/j.envpol.2019.01.020

Liu, J., & Zhu, T. (2013). NOx in Chinese Megacities. In I. Barnes & K. Rudziński (Eds.), Disposal of dangerous chemicals in urban areas and mega cities: role of oxides and acids of nitrogen in atmospheric chemistry (pp. 249–263). Springer Netherlands. https://doi.org/10.1007/978-94-007-5034-0 DOI: https://doi.org/10.1007/978-94-007-5034-0

Liu, Q., Xu, X., Lin, L., Yang, G., & Wang, D. (2021). Occurrence, health risk assessment and regional impact of parent, halogenated and oxygenated polycyclic aromatic hydrocarbons in tap water. Journal of Hazardous Materials, 413, 125360. https://doi.org/10.1016/j.jhazmat.2021.125360 DOI: https://doi.org/10.1016/j.jhazmat.2021.125360

Luo, M., Ji, Y., Ren, Y., Gao, F., Zhang, H., Zhang, L., Yu, Y., & Li, H. (2021). Characteristics and Health Risk Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China. Atmosphere, 12(3), 323. https://doi.org/10.3390/atmos12030323 DOI: https://doi.org/10.3390/atmos12030323

Maes, F., Vanhaecke, P., & Van Ypersele, J. (2007). Emissions of CO2, SO2 and NOx from Ships. Scientific Support Plan for a Sustainable Development Policy, Belgian Science Policy. https://tinyurl.com/mr39pcwt

Mallik, C., & Lal, S. (2012). SO2 and NO2 over major urban regions of India: a tempo-spatial perspective. Astrophysics data system. https://tinyurl.com/e6d9spmx

Marks, G., Ezz, W., Aust, N., Toelle, B., Xuan, W., Belousova, E., Cosgrove, C., Jalaludin, B., & Smith, W. (2010). Respiratory Health Effects of Exposure to Low-NOx Unflued Gas Heaters in the Classroom: A Double-Blind, Cluster-Randomized, Crossover Study. Environmental Health Perspectives, 118(10), 1476-1482. https://doi.org/doi:10.1289/ehp.1002186 DOI: https://doi.org/10.1289/ehp.1002186

McDonald, A., Bealey, W., Fowler, D., Dragosits, U., Skiba, U., Smith, R., Donovan, R., Brett, H., Hewitt, C., & Nemitz, E. (2007). Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment, 41(38), 8455-8467. https://doi.org/10.1016/j.atmosenv.2007.07.025 DOI: https://doi.org/10.1016/j.atmosenv.2007.07.025

McKenzie, L., Witter, R., Newman, L., & Adgate, J. (2012). Human health risk assessment of air emissions from development of unconventional natural gas resources. Science of The Total Environment, 424, 79-87. https://doi.org/10.1016/j.scitotenv.2012.02.018 DOI: https://doi.org/10.1016/j.scitotenv.2012.02.018

Mi, Y., Norbäck, D., Tao, J., Mi, Y., & Ferm, M. (2006). Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms. Indoor air, 16, 454-464. https://doi.org/10.1111/j.1600-0668.2006.00439.x DOI: https://doi.org/10.1111/j.1600-0668.2006.00439.x

Mills, I., Atkinson, R., Anderson, H., Maynard, R., & Strachan, D. (2016). Distinguishing the associations between daily mortality and hospital admissions and nitrogen dioxide from those of particulate matter: a systematic review and meta-analysis. BMJ Open, 6, e010751. DOI: https://doi.org/10.1136/bmjopen-2015-010751

Mohammadfam, I., Mirzaei, M., Soltanian, A., Tabibzadeh, M., & Mahdinia, M. (2019). Investigating interactions among vital variables affecting situation awareness based on Fuzzy DEMATEL method. International Journal of Industrial Ergonomics, 74, 102842. https://doi.org/10.1016/j.ergon.2019.102842 DOI: https://doi.org/10.1016/j.ergon.2019.102842

Mohd, S., & Mahmud, M. (2020). Urban Air Pollutant from Motor Vehicle Emissions in Kuala Lumpur, Malaysia. Aerosol and Air Quality Research, 20(12), 2793-2804. https://doi.org/10.4209/aaqr.2020.02.0074 DOI: https://doi.org/10.4209/aaqr.2020.02.0074

Mojarrad, H., Fouladi, R., Rezaali, M., Heidari, H., Izanloo, H., Mohammadbeigi, A., Mohammadi, A., & Sorooshian, A. (2020). Spatial trends, health risk assessment and ozone formation potential linked to BTEX. Human and Ecological Risk Assessment: An International Journal, 26(10), 2836-2857. https://doi.org/10.1080/10807039.2019.1688640 DOI: https://doi.org/10.1080/10807039.2019.1688640

Monn, Ch., Braendli, O., Schaeppi, G., Schindler, Ch., Ackermann, U., Leuenberger, P. & Sapaldia Team. (1995). Particulate matter < 10 μm (PM10) and total suspended particulates (TSP) in urban, rural and alpine air in Switzerland. Atmospheric Environment, 29(19), 2565-2573. https://doi.org/10.1016/1352-2310(95)94999-U DOI: https://doi.org/10.1016/1352-2310(95)94999-U

Montibeller, G., Patel, P., & del Rio, V. (2020). A critical analysis of multi-criteria models for the prioritisation of health threats. European Journal of Operational Research, 281(1), 87-99. https://doi.org/10.1016/j.ejor.2019.08.018 DOI: https://doi.org/10.1016/j.ejor.2019.08.018

Mustajoki, J., & Marttunen, M. (2017). Comparison of multi-criteria decision analytical software for supporting environmental planning processes. Environmental Modelling & Software, 93, 78-91. https://doi.org/10.1016/j.envsoft.2017.02.026 DOI: https://doi.org/10.1016/j.envsoft.2017.02.026

Nam, K., Lim, U., & Kim, B. (2012). ‘Compact’ or ‘Sprawl’ for sustainable urban form? Measuring the effect on travel behavior in Korea. The Annals of Regional Science, 49, 157-173. https://doi.org/10.1007/s00168-011-0443-7 DOI: https://doi.org/10.1007/s00168-011-0443-7

National Pollutant Inventory. (2009). Benzene. Department of Climate Change, Energy, the Environment and Water. https://tinyurl.com/44rumb73

National Pollutant Inventory (NPI). (2022). Benzene. Department of Climate Change, Energy, the Environment and Water. https://tinyurl.com/4mb5rhdp

Newman, P., & Kenworthy, J. (1991). Transport and urban form in thirty‐two of the world's principal cities. Transport Reviews, 11(3), 249-272. https://doi.org/10.1080/01441649108716787 DOI: https://doi.org/10.1080/01441649108716787

Nowak, D., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest effects on air quality and human health in the United States. Environmental Pollution, 193, 119-129. https://doi.org/10.1016/j.envpol.2014.05.028 DOI: https://doi.org/10.1016/j.envpol.2014.05.028

Nurkiewicz, T., Frisbee, J., & Boegehold, M. (2010). 6.08 - Assessment of Vascular Reactivity. In C. McQueen (Ed.), Comprehensive Toxicology (pp. 133-148). Elsevier. https://doi.org/10.1016/B978-0-08-046884-6.00707-7 DOI: https://doi.org/10.1016/B978-0-08-046884-6.00707-7

Oeder, S., Dietrich, S., Weichenmeier, I., Schober, W., Pusch, G., Jörres, R., Schierl, R., Nowak, D., Fromme, H., Behrendt, H., & Buters, J. (2012). Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany. Indoor Air, 22(2), 148-158. https://doi.org/10.1111/j.1600-0668.2011.00743.x DOI: https://doi.org/10.1111/j.1600-0668.2011.00743.x

Park, J., Kim, J., Jin, M., Jeon, J., Kim, S., Park, S., Kim, S., &Park, Y. (2012). Catalytic ozone oxidation of benzene at low temperature over MnOx/Al-SBA-16 catalyst. Nanoscale research letters, 7, 14. https://doi.org/10.1186/1556-276X-7-14 DOI: https://doi.org/10.1186/1556-276X-7-14

Pegas, P., Alves, C., Nunes, T., Bate, E., Evtyugina, M., & Pio, C. (2012). Could Houseplants Improve Indoor air Quality in Schools? Journal of Toxicology and Environmental Health, Part A, 75(22-23), 1371-1380. https://doi.org/10.1080/15287394.2012.721169 DOI: https://doi.org/10.1080/15287394.2012.721169

Péterfalvi, N., Keller, B., & Magyar, M. (2018). PM10 emission from crop production and agricultural soils. Agrokémia és Talajtan Agrokem, 67(1), 143-159. https://doi.org/10.1556/0088.2018.67.1.10 DOI: https://doi.org/10.1556/0088.2018.67.1.10

Photochemical Oxidants Review Group. (1997). Ozone in the United Kingdom. UK Department of the Environment, Transport and the Regions. https://tinyurl.com/yv6btwku

Prüss, A., Wolf, J., Corvalán, C., Bos, R., & Neira, M. (2016). Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. World Health Organization.

Reigate & Banstead. (2022). Pollutants - air quality. Reigate and Banstead. https://tinyurl.com/4pds9ny3

Rich, D., Zhang, W., Lin, S., Squizzato, S., Thurston, S., van Wijngaarden, E., Croft, D., Masiol, M., & Hopke, P. K. (2019). Triggering of cardiovascular hospital admissions by source specific fine particle concentrations in urban centers of New York State. Environment International, 126, 387-394. https://doi.org/10.1016/j.envint.2019.02.018 DOI: https://doi.org/10.1016/j.envint.2019.02.018

Rojas, L., Suh, H., Oyola, P., & Koutrakis, P. (2002). Measurements of children's exposures to particles and nitrogen dioxide in Santiago, Chile. Science of The Total Environment, 287(3), 249-264. https://doi.org/10.1016/S0048-9697(01)00987-1 DOI: https://doi.org/10.1016/S0048-9697(01)00987-1

Rolewicz, A., Lelicińska, K., & Manczarski, P. (2021). Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. Chemical Engineering Research and Design, 165, 69-80. https://doi.org/10.1016/j.cherd.2020.10.017 DOI: https://doi.org/10.1016/j.cherd.2020.10.017

Rovira, J., Domingo, J., & Schuhmacher, M. (2020). Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Science of The Total Environment, 703, 135538. https://doi.org/10.1016/j.scitotenv.2019.135538 DOI: https://doi.org/10.1016/j.scitotenv.2019.135538

Saadi, D., Tirosh, E., & Schnell, I. (2021). The Relationship between City Size and Carbon Monoxide (CO) Concentration and Their Effect on Heart Rate Variability (HRV). Int J Environ Res Public Health, 18(2), 788. https://doi.org/10.3390/ijerph18020788 DOI: https://doi.org/10.3390/ijerph18020788

Salonen, H., Salthammer, T., & Morawska, L. (2019). Human exposure to NO2 in school and office indoor environments. Environment International, 130, 104887. https://doi.org/10.1016/j.envint.2019.05.081 DOI: https://doi.org/10.1016/j.envint.2019.05.081

Schneider, P., Lahoz, W., & van der A, R. (2015). Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide. Atmos. Chem. Phys., 15(3), 1205-1220. https://doi.org/10.5194/acp-15-1205-2015 DOI: https://doi.org/10.5194/acp-15-1205-2015

Schneider, P., & van der A, R. (2012). A global single-sensor analysis of 2002–2011 tropospheric nitrogen dioxide trends observed from space. Journal of Geophysical Research: Atmospheres, 117(D16), 1-17. https://doi.org/10.1029/2012JD017571 DOI: https://doi.org/10.1029/2012JD017571

Seker, S., & Zavadskas, E. (2017). Application of Fuzzy DEMATEL Method for Analyzing Occupational Risks on Construction Sites. Sustainability, 9(11), 2083. https://doi.org/10.3390/su9112083 DOI: https://doi.org/10.3390/su9112083

Selerio, E., Caladcad, J., Catamco, M., Capinpin, E., & Ocampo, L. (2022). Emergency preparedness during the COVID-19 pandemic: Modelling the roles of social media with fuzzy DEMATEL and analytic network process. Socio-Economic Planning Sciences, 82, 101217. https://doi.org/10.1016/j.seps.2021.101217 DOI: https://doi.org/10.1016/j.seps.2021.101217

Shahi, E., Alavipoor, F., & Karimi, S. (2018). The development of nuclear power plants by means of modified model of Fuzzy DEMATEL and GIS in Bushehr, Iran. Renewable and Sustainable Energy Reviews, 83, 33-49. https://doi.org/10.1016/j.rser.2017.10.073 DOI: https://doi.org/10.1016/j.rser.2017.10.073

Sinha, S., Raj, A., AlShoaibi, A., Alhassan, S., & Chung, S. (2014). Benzene Destruction in Claus Process by Sulfur Dioxide: A Reaction Kinetics Study. Industrial & Engineering Chemistry Research, 53(26), 10608-10617. https://doi.org/10.1021/ie501732a DOI: https://doi.org/10.1021/ie501732a

Smedje, G., Norbåck, D., & Edling, C. (1997). Subjective Indoor Air Quality in Schools in Relation to Exposure. Indoor Air, 7(2), 143-150. https://doi.org/10.1111/j.1600-0668.1997.00009.x DOI: https://doi.org/10.1111/j.1600-0668.1997.00009.x

Smith, S., Stribley, F., Milligan, P., & Barratt, B. (2001). Factors influencing measurements of PM10 during 1995–1997 in London. Atmospheric Environment, 35(27), 4651-4662. https://doi.org/10.1016/S1352-2310(01)00117-0 DOI: https://doi.org/10.1016/S1352-2310(01)00117-0

Sornn, H., Poulsen, R., Nowinska, A., & de Langen, P. (2021). What drives ports around the world to adopt air emissions abatement measures? Transportation Research Part D: Transport and Environment, 90, 102644. https://doi.org/10.1016/j.trd.2020.102644 DOI: https://doi.org/10.1016/j.trd.2020.102644

Stewart, D., Saunders, E., Perea, R., Fitzgerald, R., Campbell, D., & Stockwell, W. (2017). Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin. Environmental Health Insights, 11. https://doi.org/10.1177/1178630217737551 DOI: https://doi.org/10.1177/1178630217737551

Stewart, J. (1947). Suggested Principles of "Social Physics". Science, 106(2748), 179-180. DOI: 10.1126/science.106.2748.179 DOI: https://doi.org/10.1126/science.106.2748.179

Strebel, K., Espinosa, G., Giralt, F., Kindler, A., Rallo, R., Richter, M., & Schlink, U. (2013). Modeling airborne benzene in space and time with self-organizing maps and Bayesian techniques. Environmental Modelling & Software, 41, 151-162. https://doi.org/10.1016/j.envsoft.2012.12.001 DOI: https://doi.org/10.1016/j.envsoft.2012.12.001

Tegen, I., Harrison, S., Kohfeld, K., Prentice, I., Coe, M., & Heimann, M. (2002). Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. Journal of Geophysical Research: Atmospheres, 107(D21), 14-27. https://doi.org/10.1029/2001JD000963 DOI: https://doi.org/10.1029/2001JD000963

The State of Queensland (Department of Transport and Main Roads). (2017). Motor vehicle pollution. Queensland Government.

Tunsaringkarn, T., Prueksasit, T., Morknoy, D., Sawatsing, R., Chinveschakitvanich, V., Rungsiyothin, A., & Zapaung, K. (2015). Indoor air assessment, health risks, and their relationship among elderly residents in urban warrens of Bangkok, Thailand. Air Quality, Atmosphere & Health, 8(6), 603-615. https://doi.org/10.1007/s11869-014-0302-7 DOI: https://doi.org/10.1007/s11869-014-0302-7

U.S. Environmental Protection Agency. (2022). Sulfur Dioxide (SO2) Pollution. U.S. Environmental Protection Agency. https://tinyurl.com/42zk4kyj

The United Nations Economic Commission for Europe. (2021). Air pollution, ecosystems and biodiversity. UNECE. https://tinyurl.com/yvjf3ate

Voinov, A., Kolagani, N., McCall, M., Glynn, P., Kragt, M., Ostermann, F., Pierce, S., & Ramu, P. (2016). Modelling with stakeholders – Next generation. Environmental Modelling & Software, 77, 196-220. https://doi.org/10.1016/j.envsoft.2015.11.016 DOI: https://doi.org/10.1016/j.envsoft.2015.11.016

Wang, Y., Liu, C., Wang, Q., Qin, Q., Ren, H., & Cao, J. (2021). Impacts of natural and socioeconomic factors on PM2.5 from 2014 to 2017. Journal of Environmental Management, 284, 112071. https://doi.org/10.1016/j.jenvman.2021.112071 DOI: https://doi.org/10.1016/j.jenvman.2021.112071

Wang, Z., & Fang, C. (2016). Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere, 148, 148-162. https://doi.org/10.1016/j.chemosphere.2015.12.118 DOI: https://doi.org/10.1016/j.chemosphere.2015.12.118

Wang, Z., Liang, L., & Wang, X. (2021). Spatiotemporal evolution of PM2.5 concentrations in urban agglomerations of China. Journal of Geographical Sciences, 31, 878-898. https://doi.org/10.1007/s11442-021-1876-2 DOI: https://doi.org/10.1007/s11442-021-1876-2

World Health Organization. (2010). WHO guidelines for indoor air quality: selected pollutants. World Health Organization.

World Health Organization. (2021). Review of evidence on health aspects of air pollution: REVIHAAP project: technical report. World Health Organization. https://tinyurl.com/mr3uhd6k

Wu, B., Li, T., Baležentis, T., & Štreimikienė, D. (2019). Impacts of income growth on air pollution-related health risk: Exploiting objective and subjective measures. Resources, Conservation and Recycling, 146, 98-105. https://doi.org/10.1016/j.resconrec.2019.03.037 DOI: https://doi.org/10.1016/j.resconrec.2019.03.037

Wu, J., Wang, X., Li, J., & Tu, Y. (2017). [Comparison of Models on Spatial Variation of Concentration:A Case of Beijing-Tianjin-Hebei Region]. Huan jing ke xue= Huanjing kexue, 38(6), 2191-2201. https://doi.org/10.13227/j.hjkx.201611114

Wu, W., & Lee, Y. (2007). Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Systems with Applications, 32(2), 499-507. https://doi.org/10.1016/j.eswa.2005.12.005 DOI: https://doi.org/10.1016/j.eswa.2005.12.005

Yang, B., Guo, Y., Zou, Z., Gui, Z., Bao, W., Hu, L., Chen, G., Jing, J., Ma, J., Li, S., Ma, Y., Chen, Y., & Dong, G. (2021). Exposure to ambient air pollution and visual impairment in children: A nationwide cross-sectional study in China. Journal of Hazardous Materials, 407, 124750. https://doi.org/10.1016/j.jhazmat.2020.124750 DOI: https://doi.org/10.1016/j.jhazmat.2020.124750

Yang, X., Wang, S., Zhang, W., & Yu, J. (2017). Are the temporal variation and spatial variation of ambient SO2 concentrations determined by different factors? Journal of Cleaner Production, 167, 824-836. https://doi.org/10.1016/j.jclepro.2017.08.215 DOI: https://doi.org/10.1016/j.jclepro.2017.08.215

Yu, K. (2010). Numerical simulation on suspended fine particulate PM10 of fugitive dust at Ta-An river near estuary [Tesis de maestría, Universidad Nacional Chung Hsing]. National Central Library.

Zhang, D., He, B., Yuan, M., Yu, S., Yin, S., & Zhang, R. (2021). Characteristics, sources and health risks assessment of VOCs in Zhengzhou, China during haze pollution season. Journal of Environmental Sciences, 108, 44-57. https://doi.org/10.1016/j.jes.2021.01.035 DOI: https://doi.org/10.1016/j.jes.2021.01.035

Zhang, Z., Wang, L., Wang, Y., & Martínez, L. (2023). A novel alpha-level sets based fuzzy DEMATEL method considering experts’ hesitant information. Expert Systems with Applications, 213, 118925. https://doi.org/10.1016/j.eswa.2022.118925 DOI: https://doi.org/10.1016/j.eswa.2022.118925

Zhong, K., Yang, F., & Kang, Y. (2013). Indoor and outdoor relationships of CO concentrations in natural ventilating rooms in summer, Shanghai. Building and Environment, 62, 69-76. https://doi.org/10.1016/j.buildenv.2013.01.010 DOI: https://doi.org/10.1016/j.buildenv.2013.01.010

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.