Contenido principal del artículo

Autores

Se realizó una revisión del estado del arte de las técnicas de teledetección para la implementación de programas de mitigación de Gases de Efecto Invernadero (GEI), MDL y REDD. Para tal fin se recopiló la información documentada haciendo una clasificación de la misma en tres grandes clases de sensores: ópticos, radar y LiDAR. Posteriormente, se evaluó la conveniencia del uso de cada uno de estos en los diferentes elementos que contiene el monitoreo de REDD en áreas tropicales, resaltando la gran importancia que tienen las observaciones de campo y el conocimiento de las áreas evaluadas para la escogencia de la escala y para los supuestos que se realicen en la tipificación de la dinámica del bosque. Por último, se presentan las características principales de los tipos de sensores, así como sus limitaciones y cómo estas limitaciones se pueden disminuir al combinar diferentes técnicas metodológicas.

Zapata Arbeláez, B. I., & Anaya Acevedo, J. A. (2011). LOS SENSORES REMOTOS EN LOS PROYECTOS DE MITIGACIÓN DE GASES DE EFECTO INVERNADERO. Entorno Geográfico, (7-8). https://doi.org/10.25100/eg.v0i7-8.7565
ACHARD, F., De Fries, R., Eva, H., Hansen, M., Mayaux, P. y H-J. Stibig. 2007. Pan-tropical monitoring of deforestation. En: Environmental Research Letters. No. 2 (2007) 045022. 11p.

ANAYA, J. A., Chuvieco, E. y A. Palacios. 2009. Aboveground biomass assessment in Colombia: A remote sensing approach. En: Forest Ecology and Management. Vol: 257 (2009) 1237–1246. 10p.

ASNER, G. P. 2009. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. En: Environmental Research Letters. No. 4 (2009) 034009 (11p).

BACCINI, A., Laporte, N., Goetz, S. J., Sun, M. y H. Dong. 2008. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. En: Environmental Research Letters. No. 3 (2008) 045011 (9p).

BAHAMONDEZ, C., Lorenz, M., Mery, G. y J. Varjo. 2005. Evaluación de los recursos forestales ante necesidades cambiantes de información. En: Forest in the Global Balance – Changing Paradigms.

BALLHORN, U., Florian, S., Masonc, M. y S. Limind. 2009. Derivation of burn scar depths and estimation of carbon emissions with LiDAR in Indonesian peatlands. En: Proceeding of the National Academy of Sciences of the United States of America (PNAS). Vol: 106. No. 50 (21213-21218) 6p.

BODART, C., Beuchle, D., Simonetti, D., Eva, H., Raši, R., Carboni, S., Brink, A., Stibig, H.-J. A, Achard, F. y P. Mayaux. 2009. Global Monitoring of Tropical Forest Cover Changes by Means of a Sample Approach and Objectbased Classification of Multi-scene Landsat Imagery: Pre-processing and First Results.

BÖTTCHER, H., Eisbrenner, K., Fritz, S., Kindermann, G., Kraxner, F., Mccallum, I. y M. Obersteiner. 2009. An assessment of monitoring requirements and costs of ‘Reduced Emissions from Deforestation and Degradation. En: Carbon Balance and Management 2009, 4:7. 14p.

BROWN, S., Dejong, B., Guerrero, G., Hall, M., Masera, O., Marzoli, W., Ruiz, F. y D. Shoch. 2003. Modelación de la deforestación en México y sus implicaciones para los proyectos de captura de carbono. En: Finalización de Líneas Base de Deforestación Evitada. Winrock International.

CHUVIECO, E. Fundamentos de Teledetección Espacial, Ediciones RIALP, S.A, 2da. Edición, Madrid, España, 1995.

CHUVIECO, E., A. De Santis, D. Riaño y K. Halligan. 2007. Simulation approaches for burn severity estimation using remotely sensed images. En: Fire Ecology 3(1): 129-150.

DE FRIES, R. S., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D. y J. Townshend. 2002. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. En: Proceeding of the National Academy of Sciences of the United States of America (PNAS). Vol: 99. No. 2 (14256-14261) 6p.

DUTSCHKE, M. y R. Wolf. 2007. Reducing Emissions from Deforestation in Developing Countries. The way forward. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH. Climate Protection Programme in Developing Countries.

FOODY, G. M., Boyd, D. S. y M. E.J. Cutler, 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. En: Remote Sensing of Environment. No:85 (2003) 463–474,12p.

FULLER, D. O. 2006. Tropical forest monitoring and remote sensing: A new era of transparency in forest governance?. En: Singapore Journal of Tropical Geography. No. 27 (2006) 15–29. 15p.

GAO, W., Zhou, N., Li, H. y D. M. Kammen. 2007. Possibility and potential of clean development mechanisms in China. En: Environmental Research Letter 2(2007) 044005. 8p.

GARCÍA, M., Prado, E., Riaño., D., Chuvieco, E. y F. M. Danson. 2009. Ajuste planimétrico de datos LiDAR para la estimación de características dasométricas en el Parque Natural del Alto Tajo. En: GeoFocus No. 9, p.184208. ISSN: 1578-5157, 25 p.

GIBBS, H.K., Brown, S.O., Niles, J. y J.A. Foley. 2007. Monitoring and estimating tropical carbon stocks: making REDD a reality. En: Environmental Research Letters. No. 2, p. 1–13. GOETZ, S. J., Baccini, A., Laporte, N. T., Johns, T., Walker, W., Kellndorfer, J., Houghton, R. A. y M. Sun. 2009. Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. En: Carbon Balance and Management 2009, 4:2. 7p.

GOFC-GOLD. 2009. Reducing greenhouse gas emissions from deforestation and degradation in developing countries: a sourcebook of methods and procedures for monitoring, measuring and reporting, Gofc-Gold Report version COP14-2, (Gofc-Gold Project Office, Natural Resources Canada, Alberta, Canada).

HAMILTON, K., M. Sjardin, T. Marcello y G. Xu. 2008. Forging a Frontier: State of the Voluntary Carbon Markets. A report by Ecosystem Marketplace y New Carbon Finance.

HESE, S., C. Schmullius, R. Dubayah, W. Lucht, y M. Barnsley. 2004. The earth observation mission CARBON-3D – a synergetic multi-sensor approach to global biomass mapping for an improved understanding of the CO2 balance. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVI - 8/W2. Freiburg, Germany 03-06 October 2004.

HIEPE, C. y H. Kanamaru. 2008. Review of literature on monitoring to support REDD. UN-REDD PROGRAMME. 24p.

HOUGHTON, R. A., Butman. D., Bunn, A. G., Krankina, O. N., Schlesinger, P. y T. A. Stone. 2007. Mapping Russian forest biomass with data from satellites and forest inventories. En: Environmental Research Letters. No. 2 (2007) 045032. 7p.

Intergovernmental Panel on Climate Change (IPCC). 2006 Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme, IGES, Japan.

Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change: the physical science basis. Cambridge University Press, Cambridge, UK.

KAGI, W. y D. Schone. 2005. Forestry projects under de CDM, procedures experiences and lessons learned. FAO. B.S.S. Economic Consultants. Blumenrain 16. Basel. Switzerland.

KEELING H. C. y O. L. Phillips. 2007. The global relationship between forest productivity and biomass. Global Ecology and Biogeography. 14p.

LAGUADO, W., A. Yepes, A. Sierra y B. Zapata. 2008. Exploración de oportunidades de los proyectos forestales bajo los mercados voluntarios y panorama actual de los proyectos REDD. Informe final. Este documento se realizó en el marco del proyecto: “Mas Bosques para Medellín: un ambiente sano para el presente y el futuro” Centro de Investigación en Ecosistemas y Cambio Global Carbono y Bosques – CyB y Corporación Autónoma Regional Rionegro – Nare – CORNARE.

LEFSKY, M. A., D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. Del Bom Espirito-Santo, M. O. Hunter, y R. De Oliveira Jr. (2005), Estimates of forest canopy height and aboveground biomass using ICESat. En: Geophysical Research Letter. Vol 32, L22S02, doi:10.1029/2005GL023971.

LINDQUIST, E. J. y K. B. F. Kamelarczyk. 2009. Linking remote sensing and field data to model carbon stocks in the Congo Basin: A tool for REDD. IOP Conf. Ser.: Earth and Environmental Science. No. 6 (2009). LU, D. 2005. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. En: International Journal of Remote Sensing. Vol. 26, No. 12, 2509–2525. 17p.

MOLLICONE, D., Freibauer, A., Schulze, E. D., Braatz, S., Grassi, G. y S. Federici. 2007. Elements for the expected mechanisms on ‘reduced emissions from deforestation and degradation, REDD’ under UNFCCC. En: Environmental Research Letters. No. 2(2007) 045024. 7p.

MYNENI, R. B., Dong, J., Tucker, C. J., Kaufmann, R. K., Kauppi, P. E., Liski, J., Zhou, L., Alexeyev, V. y M. K. Hughes. 2001. A large carbon sink in the woody biomass of Northern forests. Proceeding of the National Academy of Sciences of the United States of America (PNAS). 98(26): 14784-14789. OLANDER, L. P., Gibbs, H. K., Steininger, M. K., Swensen, J. J. y B. C. Murray. 2008. Reference scenarios for deforestation and forest degradation in support of REDD: a review of data and methods. En: Environmental Research Letters. No. 3(2008) 025011. 11p.

ORREGO, S. A., Del Valle, J. I. y Moreno, F. H (EDS.). 2003. Medición de captura de carbono en ecosistemas forestales tropicales de Colombia: contribuciones para la mitigación del cambio climático. Panamericana Formas e Impresos S.A, Medellín.

PETERSON, B., Dubayah, R., Hyde, P., Hofton, M., Blair, J. B. y J. F. Kaufman. 2005. Use of LiDAR for Forest Inventory and Forest Management Application. Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium. 193-200. 8p.

SALINAS, Z. y P. Hernández (Eds). 2008. Guía para el diseño de proyectos MDL forestales y de bioenergía. Serie Técnica. Manual técnico No 83. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) Turrialba, Costa Rica.

SHORT, N. M. 2009. The Remote Sensing Tutorial. National Aeronautics and Space Administration (NASA). Disponible en: http://rst.gsfc.nasa.gov. Consultado en enero de 2010.

STEININGER, M. K. 2000. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. En: International Journal of Remote Sensing Vol. 21, No. 6 & 7, 1139–1157. 19p.

STEININGER, M. y N. Horning. 2007. The Basics of Remote Sensing. En: Sourcebook on Remote Sensing and Biodiversity Indicators. Secretarial of the Convention on Biological Diversity. CBD Technical Series No 32.

STRITTHOLT, J y M. Steininger. 2007. Trends in Selected Biomes, Habitats, and Ecosystems: Forests. En: Sourcebook on Remote Sensing and Biodiversity Indicators. Secretarial of the Convention on Biological Diversity. CBD Technical Series No 32.

Tucker, C. J. Y J. R. G. Townshend. 2000. Strategies for monitoring tropical deforestation using satellite data. En: International Journal of Remote Sensing. Vol. 21, No. 6 & 7, 1461–1471. 11p.

United Nations Framework Convention on Climate Change (UNFCCC). 1998. Kyoto Protocol to the United Nations Framework Convention on Climate Change.

United Nations Framework Convention on Climate Change (UNFCCC). 2009. Procedures to demonstrate the eligibility of lands for afforestation and reforestation CDM project activities. Executive Board report 35, Annex 18.

WITTMANn, F., Anhuf, D. y W. Junk. 2000. Detection of Different Forest Types in Central Amazonian Várzea by Remote Sensing Techniques - Preliminary Results. German-Brazilian Workshop on Neotropical Ecosystems – Achievements and Prospects of Cooperative Research Hamburg, September 3-8, 2000. Session 4: Living Resources Management: Approaches, Techniques, Variability. 607-612, 12p.

ZAMBRANO, C. y D. Cordero. 2008. REDD en América del Sur: Experiencias y herramientas útiles. Unión Internacional para la Conservación de la Naturaleza (UICN).

ZHOU, G., Wang, Y., Jiang, Y. y Yang, Z. 2002. Estimating biomass and net primary production from forest inventory data: a case study of China’s Larix forests. En: Forest Ecology and Management. 169(2002): 149-157.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.