Contenido principal del artículo

Autores

Different studies have evaluated the biocidal activity of essential oils (EO) in mosquito larvae of medical importance. However, limited research focused on analyzing the EO effect at all the stages of the life cycle of Aedes aegypti has been done. This study evaluates the biological activity of the EO Salvia officinalis against Ae. aegypti. The ovicidal activity was evaluated at 1, 5, 37 and 50 mg.L-1 concentrations in eggs from 0-12 h and eggs from 0-72 h. Larvicidal, pupicidal and adulticidal activities were assessed at exploratory concentrations (EC) and multiple concentrations. We employed an EC of 1,000 mg.L-1 for repellent activity and used an exposure time of 0-2 min and 2-15 min on the forearms of volunteers. The deterrent action was estimated at EC of 5, 50 and 200 mg.L-1. The EO caused malformations in embryos as well as larvae alteration. The highest larvicidal activity was at 63 and 76 mg.L-1 (27 ± 13.4 and 37 ± 18.6 %) with 24 h exposure. The greatest pupicidal mortality was at 310 and 390 mg.L-1 (89 ± 1.53 and 100 ± 0 %) with 48 h exposure. Adulticidal mortality at 300 mg.L-1 was 57.5 ± 0 % and the percentage of repellency was 42 ± 4.7 %. The dissuasive action at 200 mg.L-1 was 97 ± 4.81 %, with an oviposition activity rate of -0.94. S. officinalis showed a biocidal effect on embryos and mortality of pupae and adults, indicating that its potential use in control programs should be focused on these stages of development.

Castillo-Morales, R. M., & Duque Luna, J. E. (2020). Dissuasive and biocidal activity of Salvia officinalis (Lamiaceae) with induction of malformations in Aedes aegypti (Diptera: Culicidae). Revista Colombiana De Entomología, 46(2), e7683. https://doi.org/10.25100/socolen.v46i2.7683

ABOU-ELNAGA, Z. S. 2014. Insecticidal bioactivity of eco-friendly plant origin chemicals against Culex pipiens and Aedes aegypti (Diptera: Culicidae). Journal of Entomology and Zoology Studies 2 (6): 340-347. https://www.entomoljournal.com/archives/2014/vol2issue6/PartG/75-258.pdf

ACIOLE, S. D. G.; PICCOLI, C. F.; DUQUE L., J. E.; COSTA, E. V.; NAVARRO-SILVA, M. A.; MARQUES, F. A. SALES MAIA, B. H. L. N.; PINHEIRO, M. L. B.; REBELO, M. T. 2011. Insecticidal activity of three species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae). Revista Colombiana de Entomología 37 (2): 262-268. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882011000200018

ALI, A.; TABANCA, N.; DEMIRCI, B.; BLYTHE, E. K.; ALI, Z.; CAN BASER, K. H.; KHAN, I. A. 2015. Chemical composition and biological activity of four Salvia essential oils and individual compounds against two species of mosquitoes. Journal of Agricultural and Food Chemistry 63 (2): 447-456. https://doi.org/10.1021/jf504976f

ÁLVAREZ GONZÁLEZ, L.; PONCE GARCÍA, G; OVIEDO, M.; BRICEÑO, A.; FLORES SUÁREZ, A. E. 2014. Mecanismos asociados a la resistencia al derribo “kdr” a la deltametrina en Aedes aegypti del occidente de Venezuela. Boletín de Malariologia y Salud Ambiental 54 (1): 58-67. http://ve.scielo.org/pdf/bmsa/v54n1/art07.pdf

ARANGO, M. C 2013. Intervención de los compuestos secundarios en las interacciones biológicas. pp. 191-256. In: Ringuelet, J.; Viña, S. (Eds.). Productos naturales vegetales Editorial de la Universidad de La Plata. 1era edición. Universidad Nacional de La Plata. La Plata, Buenos Aires, Argentina. 261 p. http://sedici.unlp.edu.ar/handle/10915/27885 [Review date: 27 April 2018].

ARDILA-ROLDÁN, S.; SANTACOLOMA, L.; BROCHERO, H. 2013. Estado de la sensibilidad a los insecticidas de uso en salud pública en poblaciones naturales de Aedes aegypti (Diptera: Culicidae) del departamento de Casanare, Colombia. Revista Biomédica 33 (3): 446-458. https://doi.org/10.7705/biomedica.v33i3.1534

ARIVOLI, S.; TENNYSON, S. 2011. Studies on the mosquitocidal activity of Murraya koenigii (L.) Spreng (Rutaceae) leaf extracts against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Asian Journal of Experimental Biology Sciences 2 (4): 721-730.

ÁVALOS, G. A.; PÉREZ-URRIA, C. E. 2009. Metabolismo secundario de plantas. Reduca (Biología) 2 (3): 119-145. http://www.revistareduca.es/index.php/biologia/article/view/798/814

BERNOTIENĖ, G.; NIVINSKIENĖ, O.; BUTKIENĖ, R.; MOCKUTÉ, D. 2007. Essential oil composition variability in sage (Salvia officinalis L.). Chemija 18 (4): 38-43. http://mokslozurnalai.lmaleidykla.lt/publ/0235-7216/2007/4/38-43.pdf

BHATT, S.; GETHING, P.; BRADY, O. J.; MESSINA, J. P.; FARLOW, A. W.; MOYES, C. L.; DRAKE, J. M; BROWNSTEIN, J. S.; HOEN, A. G.; SANKOH, O.; MYERS, M. F.; GEORGE, D. B.; JAENISCH, T.; WINT, G. R. W.; SIMMONS, C. P.; SCOTT, T. W.; FARRAR, J. J.; HAY, S. I. 2013. The global distribution and burden of dengue. Nature 496: 504-507. https://doi.org/10.1038/nature12060

BROGDON, W. G; McALLISTER, J. C. 1998. Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. Journal of the American Mosquito Control Association 14 (2): 159-164. https://www.biodiversitylibrary.org/content/part/JAMCA/JAMCA_V14_N2_P159-164.pdf

CANDIDO, L. P.; CAVALCANTI, M. T.; BESERRA, E. B. 2013. Bioactivity of plant extracts on the larval and pupal stages of Aedes aegypti (Diptera, Culicidae). Revista da Sociedade Brasileira de Medicina Tropical 46 (4): 420-425. https://doi.org/10.1590/0037-8682-0118-2013

CASTAÑEDA, M. L.; MUÑOZ, A.; MARTÍNEZ, J. R.; STASHENKO, E. E. 2007. Estudio de la composición química y la actividad biológica de los aceites esenciales de diez plantas aromáticas colombianas. Scientia et Technica 13 (33): 165-166. https://www.redalyc.org/pdf/849/84903338.pdf

CASTILLO, R. M.; STASHENKO, E.; DUQUE, J. E. 2017. Insecticidal and repellent activity of several plant-derived essential oils against Aedes aegypti. Journal of the American Mosquito Control Association 33 (1): 25-35. https://doi.org/10.2987/16-6585.1

CASTRILLÓN, J. C.; CASTAÑO, J. C.; URCUQUI, S. 2015. Dengue en Colombia, diez años de evolución. Revista Chilena de Infectología 32 (2): 22-29. https://doi.org/10.4067/S0716-10182015000300002

DAVIS, E. E.; BOWEN, M. 1994. Sensory physiological basis for attraction mosquitoes. Journal of the American Mosquito Control Association 10 (2): 316-325. https://www.biodiversitylibrary.org/content/part/JAMCA/JAMCA_V10_N2_P316-325.pdf

DEBBOUN, M.; FRANCES, S. P.; STRICKMAN, D. 2007. Standard methods for testing mosquito repellents. pp 103-110. In: Debboun, M.; Frances, S.; Strickman, D. (Ed.). Insect repellents: principles, methods, and uses. Taylor and Francis Group. CRC Press. Boca Ratón, Florida, EE. UU. 464 p.

DEVILLERS, J.; LAGNEAU, A. C.; LATTES, A.; GARRIGUES, J. C.; CLÉMENTÉ, M. M.; YÉBAKIMA, A. 2014. In silico models for predicting vector control chemicals targeting Aedes aegypti. SAR and QSAR in Environmental Research 25 (10): 805-835. https://doi.org/10.1080/1062936X.2014.958291

EL-GENDY, N. A.; SHAALAN, E. A. 2012. Oviposition deterrent activity of some volatile oils against the filaria mosquito vector Culex pipiens. Journal of Entomology 6 (6): 435-441. https://doi.org/10.3923/je.2012.435.441

ELANGO, G.; RAHUMAN, A. A.; KAMARAJ, C.; BAGAVAN, A.; ZAHIR, A. A. 2012. Adult emergence inhibition and adulticidal activity of leaf crude extracts against Japanese encephalitis vector, Culex tritaeniorhynchus. Journal of King Saud University - Science 24 (1): 73-80. https://doi.org/10.1016/j.jksus.2010.08.012

FINNEY, D. J. 1949. The adjustment for a natural response rate in Probit Analysis. Annals of Applied Biology 36 (2): 187-195. https://doi.org/10.1111/j.1744-7348.1949.tb06408.x

GLEISER, R. M.; BONINO, M. A.; ZYGADLO, J. A. 2007. Bioactividad de aceites esenciales de Minthostachys mollis contra mosquitos. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 6 (6): 350-351. https://www.redalyc.org/pdf/856/85617472019.pdf

GOKULAKRISHNAN, J.; KUPPUSAMY, E.; SHANMUGAM, D.; APPAVU, A.; KALIYAMOORTHI, K. 2013. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes. Asian Pacific Journal of Tropical Disease 3 (1): 26-31. https://doi.org/10.1016/S2222-1808(13)60006-7

GUHA, L.; SEENIVASAGAN, T.; BANDYOPADHYAY, P.; IQBAL, S. T.; SATHE, M., SHARMA, P.; PARASHAR, B. D.; KAUSHIK, M. P.; THANVIR, S.; SATHE, M.; SHARMA, P.; PARASHAR, B. D.; KAUSHIK, M. P. 2012. Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazone esters. Parasitology Research 111 (3): 975-982. https://doi.org/10.1007/s00436-012-2921-y

JARAMILLO RAMIREZ, G. I.; LOGAN, J. G.; LOZA-REYES, E.; STASHENKO, E.; MOORES, G. D. 2012. Repellents inhibit P450 enzymes in Stegomyia (Aedes) aegypti. PLoS ONE 7 (11): 1-8. https://doi.org/10.1371/journal.pone.0048698

KISHORE, N.; MISHRA, B. B.; TIWARI, V. K.; TRIPATHI, V. 2011. A review on natural products with mosquitocidal potentials. Research Signpost 335-365.

KOUL, O.; WALIA, S.; DHALIWAL, G. S. 2008. Essential oils as green pesticides: Potential and constraints. Biopesticides International 4 (1): 63-84.

KRAMER, W. L.; MULLA, M. S. 1979. Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquito to organic infusions. Environmental Entomology 8 (6): 1111-1117. https://doi.org/10.1093/ee/8.6.1111

LEYVA, M.; MARQUETTI, M. C.; TACORONTE, J. E.; SCULL, R.; TIOMNO, O.; MESA, A.; MONTADA, D. 2009. Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L.) (Diptera: Culicidae). Revista Biomédica 20 (1): 5-13. https://www.medigraphic.com/pdfs/revbio/bio-2009/bio091b.pdf

LEYVA, M.; TIOMNO, O.; TACORONTE, J. E.; MARQUETTI, M. C.; MONTADA, D. 2012. Essential plant oils and insecticidal activity in Culex quinquefasciatus. pp. 221-238. In: Perveen, F. (Ed.). Insecticides – Pest Engineering. Ed. Intech, 538 p. ISBN 978-953-307-895-3. https://doi.org/10.5772/27818

LICASTRO, S.; HÉCTOR, M.; SECCACINI, E.; HARBURGUER, L.; LUCIA, A.; ZERBA, E. 2010. Innovación en herramientas de control del mosquito Aedes aegypti (Diptera: Culicidae), transmisor del dengue en Argentina. Ciencia e Investigación 60 (4): 49-57. http://aargentinapciencias.org/wp-content/uploads/2017/11/revista_cei60-4.pdf

LUCIA, A.; GONZALEZ-AUDINO, P.; SECCACINI, E.; LICASTRO, S.; ZERBA, E.; MASUH, H. 2007. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. Journal of the American Mosquito Control Association 23 (3): 299-303. https://doi.org/10.2987/8756-971X(2007)23[299:LEOEGE]2.0.CO;2

LUCIA, A.; HARBURGUER, L.; LICASTRO, S.; ZERBA, E., MASUH, H. 2009a. Efficacy of a new combined larvicidal-adulticidal ultralow volume formulation against Aedes aegypti (Diptera: Culicidae), vector of dengue. Parasitology Research 104 (5): 1101-1107. https://doi.org/10.1007/s00436-008-1294-8

LUCIA, A.; LICASTRO, S.; ZERBA, E.; AUDINO, P. G.; MASUH, H. 2009b. Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils. Bioresource Technology 100 (23): 6083-6087. https://doi.org/10.1016/j.biortech.2009.02.075

LUCIA, A.; JUAN, L. W.; ZERBA, E. N.; HARRAND, L.; MARCÓ, M.; MASUH, H. M. 2011. Validation of models to estimate the fumigant and larvicidal activity of Eucalyptus essential oils against Aedes aegypti (Diptera: Culicidae). Parasitology Research 110: 1675-1686. https://doi.org/10.1007/s00436-011-2685-9

LUCIA, A.; ZERBA, E.; MASUH, H. 2013. Knockdown and larvicidal activity of six monoterpenes against Aedes aegypti (Diptera: Culicidae) and their structure-activity relationships. Parasitology Research 112 (12): 4267-4272. https://doi.org/10.1007/s00436-013-3618-6

MAESTRE-SERRANO, R.; GÓMEZ-CAMARGO, D. 2013. Dengue: Epidemiología, políticas públicas y resistencia de vectores a insecticidas. Revista Ciencias Biomédicas 4 (2): 302-317.

MAHESWARAN, R.; IGNACIMUTHU, S. 2012. A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitology Research 110: 1801-1813. https://doi.org/10.1007/s00436-011-2702-z

MATHIVANAN, T.; GOVINDARAJAN, M.; ELUMALAI, K.; KRISHNAPPA, K.; ANANTHAN, A. 2010. Mosquito larvicidal and phytochemical properties of Ervatamia coronaria Stapf. (Family: Apocynaceae). Journal of Vector Borne Diseases 47 (3): 178-180. http://www.mrcindia.org/journal/issues/473178.pdf

NAVARRO-SILVA, M. A.; MARQUES, F. A.; DUQUE L., J. E. 2009. Review of semiochemicals that mediate the oviposition of mosquitoes: a possible sustainable tool for the control and monitoring of Culicidae. Revista Brasileira de Entomologia 53 (1): 1-6. https://doi.org/10.1590/S0085-56262009000100002

NERIO, L. S.; OLIVERO-VERBEL, J.; STASHENKO, E. 2010. Repellent activity of essential oils: A review. Bioresource Technology 101 (1): 372-378. https://doi.org/10.1016/j.biortech.2009.07.048

PAVELA, R. 2008. Larvicidal effects of various Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitology Research 102 (3): 555-559. https://doi.org/10.1007/s00436-007-0821-3

PHASOMKUSOLSIL, S.; SOONWERA, M. 2011. Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Asian Pacific Journal of Tropical Biomedicine 1 (1): 113-118. https://doi.org/10.1016/S2221-1691(11)60136-6

PHASOMKUSOLSIL, S.; SOONWERA, M. 2012. The effects of herbal essential oils on the oviposition deterrent and ovicidal activities of Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Tropical Biomedicine 29 (1): 138-150. https://doi.org/10.1016/S2221-1691(11)60136-6

PHASOMKUSOLSIL, S.; SOONWERA, M. 2013. Efficacy of Thai herbal essential oils against three immature stages of Aedes aegypti (Linn), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Journal of Herbal Medicine 2 (2): 25-35.

PONNUSAMY, L.; XU, N.; BÖRÖCZKY, K.; WESSON, D. M.; AYYASH, L. A.; SCHAL, C.; APPERSON, C. S. 2010. Oviposition responses of the mosquitoes Aedes aegypti and Aedes albopictus to experimental plant infusions in laboratory bioassays. Journal of Chemical Ecology 36 (7): 709-719. https://doi.org/10.1007/s10886-010-9806-2

POPA, J. C.; CASTILLO, R. M.; PÉREZ, M. G.; FIGUEREDO, D.; MONTADA, D. 2011. Metamorfosis y emergencia de Aedes aegypti fuera del medio acuático y nuevo reporte de importancia entomológica y epidemiológica en Santiago de Cuba. Revista Cubana de Higiene y Epidemiologia 49 (2): 173-182. http://scielo.sld.cu/pdf/hie/v49n2/hie04211.pdf

RAMAR, M.; PAULRAJ, M. G.; IGNACIMUTHU, S. 2013. Screening of pupicidal activity of some essential oils against Culex quinquefasciatus Say. Journal of Medicinal Plant Research 1 (2): 9-12. https://www.academia.edu/4708450/Screening_of_pupicidal_activity_of_some_essential_oils_against_Culex_quinquefasciatus_Say

REZENDE, G. L.; MARTINS, A. J.; GENTILE, C.; FARNESI, L. C.; PELAJO-MACHADO, M.; PEIXOTO, A. A.; VALLE, D. 2008. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC Developmental Biology 8 (1): 82. https://doi.org/10.1186/1471-213X-8-82

RÍOS, N.; STASHENKO, E. E.; DUQUE, J. E. 2017. Evaluation of the insecticidal activity of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Entomologia 61 (4): 307-311. https://doi.org/10.1016/j.rbe.2017.08.005

RODRÍGUEZ-MORALES, A. J. 2015a. Aedes: un eficiente vector de viejos y nuevos arbovirus (dengue, chikungunya y zika) en las Américas. Revista Cuerpo Medicina 8 (2): 50-52. http://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/192/162

RODRÍGUEZ-MORALES, A. J. 2015b. No era suficiente con dengue y chikungunya: llegó también Zika. IMedPub Journals 11 (2-3): 1-4. https://www.archivosdemedicina.com/medicina-de-familia/no-era-suficiente-con-denguey-chikungunya-lleg-tambinzika.pdf

RODRÍGUEZ, R. 2002. Estrategias para el control del dengue y del Aedes aegypti en las Américas. Revista Cubana de Medicina Tropical 54 (3): 189-201. http://scielo.sld.cu/pdf/mtr/v54n3/mtr04302.pdf

RUIZ-LÓPEZ, F.; GONZÁLEZ-MAZO, A.; VÉLEZ-MIRA, A.; GÓMEZ, G. F.; ZULETA, L.; URIBE, S.; VÉLEZ-BERNAL, I. D. 2016. Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus dengue en alturas no registradas para Colombia. Revista Biomedica 36 (2): 303-308. https://doi.org/10.7705/biomedica.v36i2.3301

SANTANA, O.; CABRERA, R.; GIMÉNEZ, C.; GONZÁLEZ-COLOMA, A.; SÁNCHEZ-VIOQUE, R.; DE LOS MOZOS-PASCUAL, M.; RODRÍGUEZ-CONDE, M. F.; LASERNA-RUIZ, I.; USANO-ALEMANY, J.; HERRAIZ, D. 2012. Perfil químico y biológico de aceites esenciales de plantas aromáticas de interés agro-industrial en Castilla-La Mancha (España). Grasas y Aceites 63 (2): 214-222. https://doi.org/10.3989/gya.129611

SINGH, B.; SINGH, P. R.; MOHANTY, M. K. 2012. Toxicity of a plant-based mosquito repellent/killer. Interdisciplinary Toxicology 5 (4): 184-191. https://doi.org/10.2478/v10102-012-0031-4

SIVAGNANAME, N.; KALYANASUNDARAM, M. 2004. Laboratory evaluation of methanolic extract of Atlantia monophylla (Family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Memorias do Instituto Oswaldo Cruz 99 (1): 115-118. https://doi.org/10.1590/S0074-02762004000100021

SOONWERA, M.; PHASOMKUSOLSIL, S. 2014. Mosquito repellent from Thai essential oils against dengue fever mosquito (Aedes aegypti (L.)) and filarial mosquito vector ( Culex quinquefasciatus (Say)). African Journal of Microbiology Research 8 (17): 1819-1824. https://doi.org/10.5897/AJMR2014.6737

SOUZA, T. M.; FARIAS, D. F.; SOARES, B. M.; VIANA, M. P.; LIMA, G. P. G.; MACHADO, L. K. A.; MORAIS, S. M.; CARVALHO, A. F. U. 2011. Toxicity of Brazilian plant seed extracts to two strains of Aedes aegypti (Diptera: Culicidae) and nontarget animals. Journal of Medical Entomology 48 (4): 846-851. https://doi.org/10.1603/ME10205

SUMAN, D. S.; WANG, Y. W.; BILGRAMI, A. L.; GAUGLER, R. 2013. Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes. Acta Tropica 128 (1): 103-109. https://doi.org/10.1016/j.actatropica.2013.06.025

TAWATSIN, A.; WRATTEN, S. D.; SCOTT, R. R.; THAVARA, U.; TECHADAMRONGSIN, Y. 2001. Repellency of volatile oils from plants against three mosquito vectors. Journal of Vector Ecology 26 (1): 76-82. https://pubmed.ncbi.nlm.nih.gov/11469188/

THAVARA, U.; TAWATSIN, A.; CHOMPOOSRI, J.; SUWONKERD, W.; CHANSANG, U. R.; ASAVADACHANUKORN, P. 2001. Laboratory and field evaluations of the insect repellent 3535 (ethyl butylacetylaminopropionate) and deet against mosquito vectors in Thailand. Journal of the American Mosquito Control Association 17 (3): 190-195. https://pubmed.ncbi.nlm.nih.gov/14529087/

VALARMATHY, D.; GOVINDARAJU, M.; ELUMALAI, K. 2011. Studies on ovicidal activity of plant essential oil formulation against the eggs of important vector mosquitoes, Anopheles stephensi (Liston), Culex quinquefasciatus (Say) and Aedes aegypti (L.) at laboratory condition. International Journal of Current Research 3 (6): 378-381. https://www.recentscientific.com/sites/default/files/Download_107.pdf

VERA, S. S.; ZAMBRANO, D. F.; MÉNDEZ-SANCHEZ, S. C.; RODRÍGUEZ-SANABRIA, F.; STASHENKO, E. E.; DUQUE-LUNA, J. E. 2014. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitology Research 113 (7): 2647-2654. https://doi.org/10.1007/s00436-014-3917-6

WIEGAND, H. 1972. Finney, D. J.: Probit analysis. 3. Aufl. Cambridge University Press, Cambridge 1971. XV, 333 S., 41 Rechenbeispiele, 20 Diagr., 8 Tab., 231 Lit., L 5.80. Biometrische Zeitschrift 14 (1): 72-72. https://doi.org/10.1002/bimj.19720140111

WORLD HEALTH ORGANIZATION. 2009. Guidelines for efficacy testing of spatial repellents for human skin. World Health Organization. 1-30. https://apps.who.int/iris/handle/10665/70072

ZOUBIRI, S.; BAALIOUAMER, A. 2011. Potentiality of plants as source of insecticide principles. Journal of Saudi Chemical Society 18 (6): 925-938. https://doi.org/10.1016/j.jscs.2011.11.015

Descargas

Los datos de descargas todavía no están disponibles.
Recibido 2019-03-21
Aceptado 2020-04-02
Publicado 2020-07-15

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.