Scripting de técnicas cartográficas de R y GMT para el mapeo geomorfológico y topográfico del Perú
Conteúdo do artigo principal
El artículo presenta el uso de técnicas cartográficas de scripting para la visualización de mapas topográficos y geomorfológicos por R y GMT. Los mapas temáticos pretenden analizar la región del Perú con un enfoque específico en su geomorfología: pendiente, aspecto, elevación y sombreado realizado en las bibliotecas R «raster» y «tmap». Los materiales integrados incluyen varios conjuntos de datos integrados en la biblioteca R "OpenStreetMap": Stamen, ESRI World Imagery, Bing Maps, National Park Service. La investigación muestra un ejemplo particular del uso de conjuntos de datos de código abierto y herramientas gratuitas disponibles para la educación e investigación en línea a distancia, que se convierte en una tendencia real en la investigación geográfica moderna.
Alcalá, J., Palacios, D., Vázquez, L., & Zamorano, J. J. (2015). Timing of maximum glacial extent and deglaciation from HualcaHualca volcano (southern Peru), obtained with cosmogenic 36Cl. Geophysical Research Abstracts, 17. EGU2015-12930-1.
Alcalá-Reygosa, J., Palacios, D., & Zamorano Orozco, J. J. (2016). Geomorphology of the Ampato volcanic complex (Southern Peru). Journal of Maps, 12(5), 1160–1169. https://doi.org/10.1080/17445647.2016.1142479
Bromley, R. M., Hall, B. L., Schaefer, J. M., Winckeler, G., Todd, C. E., & Rademaker, K. M. (2011). Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science, 26(1), 37–43. https://doi.org/10.1002/jqs.1424
Clapperton, C. M. (1993). Quaternary geology and geomorphology of South America. Amsterdam: Elsevier.
Cobbing, E. (1982). The segmented coastal batholith of Peru; its relationship to volcanocity and metallogenesis. Earth-Science Reviews, 18(3–4), 241–251. https://doi.org/10.1016/0012-8252(82)90039-3
Dornbusch, U. (1998). Current large-scale climatic conditions in Southern Peru and their influence on snowline altitudes. Erdkunde, 52(1), 41–54. https://doi.org/10.3112/erdkunde.1998.01.04
Dornbusch, U. (2002). Pleistocene and present day snowline rise in the Cordillera Ampato, Western Cordillera, Southern Peru (15° 15' - 15°4'S and 73°30' - 72° 15' W). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 225, 103–126. https://doi.org/10.1127/njgpa/225/2002/103
Dornbusch, U. (2005). Glacier-rock glacier relationships as climatic indicators during the late Quaternary in the Cordillera Ampato, Western Cordillera of southern Peru. Geological Society, London, Special Publications, 242(1), 75. http://dx.doi.org/10.1144/GSL.SP.2005.242.01.07
Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., & Hillenbrand, C. (2007). Swath-bathymetric mapping. ANT-XXIII/4 R/V ’Polarstern’. Reports on Polar and Marine Research, 557, 38–45. https://doi.org/10.6084/m9.figshare.7439231
Gohl, K., Eagles, G., Udintsev, G., Larter, R. D., Uenzelmann-Neben, G., Schenke, H.-W., Lemenkova, P., Grobys, J., Parsiegla, N., Schlueter, P., Deen. T., Kuhn, G., & Hillenbrand, C.-D. (2006a). Tectonic and sedimentary processes of the West Antarctic margin of the Amundsen Sea embayment and PineIsland Bay. 2nd SCAR Open Science Meeting, 12–14 July, Hobart, Australia. https://doi.org/10.6084/m9.figshare.7435484
Gohl, K., Uenzelmann-Neben, G., Eagles, G., Fahl, A., Feigl, T., Grobys, J., Just, J., Leinweber, V., Lensch, N., Mayr, C., Parsiegla, N., Rackebrandt, N., Schlüter, P., Suckro, S., Zimmermann, K., Gauger, S., Bohlmann, H., Netzeband, G., & Lemenkova, P. (2006b). Crustal and Sedimentary Structures and Geodynamic Evolution of the West Antarctic Continental Margin and Pine Island Bay. Expeditionsprogramm Nr. 75 ANT XXIII/4 ANT XXIII/5, 11–12. https://doi.org/10.13140/RG.2.2.16473.36961
Hall, S. R., Farber, D. L., Ramage, J. M., Rodbell, D. T., Smith, J. A., Mark, B. G., & Kassel, C. (2009). Geochronology of quaternary glaciations from the tropical Cordillera Huayhuash, Peru. Quaternary Science Reviews, 28,(25-26) 2991–3009. https://doi.org/10.1016/j.quascirev.2009.08.004
Kelly, M. A., Lowell, T. V., Applegate, P. J., Smith, C. A., Phillips, F. M., & Hudson, A. M. (2012). Late glacial fluctuations of Quelccaya Ice Cap, southeastern Peru. Geology, 40(11), 991–994. https://doi.org/10.1130/G33430.1
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16), 449–458. https://doi.org/10.30638/eemj.2017.045
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, 5(1), 28–42. https://doi.org/10.2478/s13533-012-0120-0
Kull, C., & Grosjean, M. (2000). Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate–glacier model. Journal of Glaciology, 46(155), 622–632. https://doi.org/10.3189/172756500781832611
Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C. D., Kruger, S., Forwick, M., Gauger, S., & Lemenkova, P. (2006). The response of quaternary climatic cycles in the south-east pacific: development of the opal belt and dynamics behavior of the west antarctic ice sheet. Expeditionsprogramm (75) ANT XXIII/4, AWI, Bremerhaven, Germany. https://doi.org/10.13140/RG.2.2.11468.87687
Lemenkov, V., & Lemenkova, P. (2021). Using TeX Markup Language for 3D and 2D Geological Plotting. Foundations of Computing and Decision Sciences, 46(3), 43–69. https://doi.org/10.2478/fcds-2021-0004
Lemenkova, P., Promper, C., & Glade, T. (2012). Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Canada, Banff, 279–285. https://doi.org/10.6084/m9.figshare.7434230
Lemenkova, P. (2019a). GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2), 39–48. https://doi.org/10.21163/GT_2019.142.04
Lemenkova, P. (2019b). Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters, 27(2), 72–89. https://doi.org/10.6084/m9.figshare.11544048
Lemenkova, P. (2019c). Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45(2), 57–84. https://doi.org/10.3846/gac.2019.3785
Lemenkova, P. (2019d). Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering, 34(2), 51–60. https://doi.org/10.26650/ASE2019547010
Lemenkova, P. (2019e). AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, 65(4), 1–22. https://doi.org/10.35180/gse-2019-0020
Lemenkova, P. (2019f). Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4), 181–194. https://doi.org/10.2478/pcr-2019-0015
Lemenkova, P. (2020a). Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series, 18(1), 41–60. https://doi.org/10.2478/bgeo-2020-0004
Lemenkova, P. (2020b). GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset. Geodesy and Cartography, 46(3), 98–112. https://doi.org/10.3846/gac.2020.11524
Lemenkova, P. (2020c). Geomorphology of the Puerto Rico Trench and Cayman Trough in the Context of the Geological Evolution of the Caribbean Sea. Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia, 75, 115–141. DOI: 10.17951/b.2020.75.115-141
Lemenkova, P. (2020d). The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea. Geology, Geophysics and Environment, 46(3), 205–222. https://doi.org/10.7494/geol.2020.46.3.205
Lemenkova, P. (2020e). Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean. Miscellanea Geographica, 25(3), 1–13. https://doi.org/10.2478/mgrsd-2020-0038
Lemenkova, P. (2020f). GRASS GIS for topographic and geophysical mapping of the Peru-Chile Trench. Forum Geografic 19(2),143–157. https://doi.org/10.5775/fg.2020.009.d
Lemenkova, P. (2020g). Scripting cartographic methods of GMT for mapping the New Britain and San Cristobal Trenches, Solomon Sea, Papua New Guinea. Revista da Casa da Geografia de Sobral, 22(3), 122–142. https://doi.org/10.35701/rcgs.v22n3.717
Rose, J. (1996). Quaternary Geology and Geomorphology of South America. Journal of Quaternary Science, 11(5), 432–433. https://doi.org/10.1002/(SICI)1099-1417(199609/10)11:5<432::AID-JQS246>3.0.CO;2-R
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/
RStudio Team (2017). RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA. URL: https://www.RStudio.com/
Schenke, H. W., & Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, (81), 16–21. https://doi.org/10.6084/m9.figshare.7435538
Schulz, G. (1994). Die pleistozane Vergletscherung der Anden Perus und Boliviens abgeleitet aus Formen einer flachendeckend-integrativen Hohenlinienanalyse. Berliner Geographischen Abhandlungen, 58, 156 pp.
Suetova, I., Ushakova, L., & Lemenkova, P. (2005a). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, (4), 138–142. https://doi.org/10.6084/m9.figshare.7435535
Suetova, I., Ushakova, L., & Lemenkova, P. (2005b). Geoecological Mapping of the Barents Sea Using GIS. International Cartographic Conference. July 9–16, 2005, La Coruña, Spain. https://doi.org/10.6084/m9.figshare.7435529
Tennekes, M. (2018). tmap: Thematic Maps in R. Journal of Statistical Software, 84(6), 1–39. Recuperado de https://bit.ly/3vEPy4O
Ubeda, J. (2013). Cronologías glaciales del sector NE del nevado Coropuna (Perú): implicaciones geomorfológicas y paleoclimáticas. Boletín De La Asociación De Geógrafos Españoles, 62. https://doi.org/10.21138/bage.1576
Weibel, M., Frangipane-Gysel, M., & Hunziker, J. (1978). Ein Beitrag zur Vulkanologie Süd-Perus. Geol Rundsch (67), 243–252. https://doi.org/10.1007/BF01803264
Wessel, P., & Smith, W. H. F. (1996). A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research, 101(B4), 8741–8743. DOI:10.1029/96JB00104
Wessel, P., & Smith, W. H. F. (1995). New version of the Generic Mapping Tools released. Eos Transactions of the American Geophysical Union, 76(33), 329–329. https://doi.org/10.1029/95EO00198
Downloads
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.