Main Article Content

Authors

The article aims to clarify the notion of model involved in the semantic approach of theories (SAT).  It is shown that in the context of the SAT, the term ‘model’ has two functions: in one case, it is featured as a structure that satisfes one description and in another it is featured as a mathematical structure that represents aspects from some actual systems. Thus, the term “model” has two senses, however for the SAT the relevant function of models is representation and not satisfaction. This will allow us to conclude, among other things, that proponents of the structuralist conception of theories, one of the SAT’s versions, put the accent in an inappropriate way when conceiving the models in the formal semantic sense, whereas the latter versions by van Fraassen and Giere are more appropriate because they conceive the models as mathematical structures (van Fraassen) and as representations (Giere).

Guerrero Pino, G. (2010). The Notion of Model within the Semantic Approach of Theories. Praxis Filosófica, (31), 169–185. https://doi.org/10.25100/pfilosofica.v0i31.3434
Balzer, W.; Moulines, C.U.; y Sneed, J.D. (eds.) (2000): Structuralist Knowledge Representation. Paradigmatic Examples, Amsterdam, Rodopi.

Giere, R. (1988): Explaining Science. The Cognitive Approach, Chicago, University of Chicago Press.

Giere, R. (1999): “Using Models to Represent Reality”, L. Magnani et al. Edits, Model-Based Reasoning in Scientific Discovery, N.York/Dordrecht, Kluwer, pp 41-57.

Guerrero, G. (2003): Enfoque semántico de las teorías. Estructuralismo y espacio de estados: coincidencias y divergencias, Tesis doctoral, Madrid, Universidad Complutense de Madrid, (publicada en cd-rom).

Guerrero, G. (2008): “Individuación de las teorías en el enfoque semántico”, Principia, 12(1), pp. 97–119.

Manzano, M. (1989): Teoría de Modelos, Madrid, Alianza.

Martínez-Chavanz, R. (2006): Álgebra multilineal, Medellín, Editorial Universidad de Antioquia.

McKinsey, J; Sugar, A.; y Suppes, P. (1953): “Axiomatic Foundation of Classical Particle Mechanics”, Journal of Rational Mechanics and Analysis 2, pp. 253-272.

Moulines, C.U. (1982): Exploraciones metacientíficas, Madrid, Alianza.

Moulines, C.U. (2002): “La concepción estructuralista de la ciencia”, Revista de Filosofía, Universidad de Chile, vol. 58, pp. 69-77.

Suárez, M. (2005): “The Semantic View, Empirical Adequacy, and Application”, Crítica, vol. 37, No 109, pp. 29-63.

Suppes, P. (1960): “A Comparison of the Meaning and Use of Models in Mathematics and the Empirical Sciences”, Synthese 12, pp. 287-301; v.e. “Una comparación del significado y los usos de los modelos en las matemáticas y las ciencias empíricas”, en P. Suppes, Estudios de filosofía y metodología de la ciencia, Madrid, Alianza, 1988.

Suppes, P. (1970): Set-Theoretical Structures in Science, Tech. Report, Institute for Mathematical Studie in the Social Sciences, Stanford University. (Reimpreso en Suppes, 2002).

Suppes, P. (2002): Representation and Invariance of Scientific Structure, Stanford, CLSI.

Thomson-Jones, M. (2006): Models and the Semantic View”, Philosophy of Science, 73, pp. 524-535.

Van Fraassen, Bas C. (1970): “On the extension of Beth’s Semantics of Physical Theories”, Philosophy of Science, pp. 325-339.

Van Fraassen, Bas C. (1980): The Scientific Image, Oxford, Clarendon Press; v.e. La imagen científica, México, Paidós-UNAM, 1996.

Van Fraassen, Bas C. (1989): Laws and Symmetry, Oxford, Clarendon Press.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.