Main Article Content

Authors

Introduction: Antimicrobial nanoparticles such as graphene, silver, chitosan, poly (lactic) co glycolic acid, bioactive glass, mesoporous calcium silicate, copper, have generated promising results in various applications in endodontics in the incorporation of nanoparticles in sealants, irrigants and intraductal medications.
Objective: identify the mechanisms of action of the different nanoparticles in the disinfection of root canals.
Materials and methods: an exhaustive bibliographic search of original studies was carried out in the databases Medline (Pubmed), Scielo, Lilacs, Medline (Ovid), Web of science, Scopus, Embase, Google academic, choosing in vitro studies published from From 2010 to 2021, the QRayyan tool was used to select the definitive articles, excluding sources of information from animal studies, studies that did not use nanoparticles during the disinfection protocol, literature reviews and/or meta-analysis.
Results: A total of 1,567 references were identified and 17 definitive documents were selected for use in this review, each study demonstrated a clear antibacterial effect and a significant antimicrobial reduction in root canal disinfection.
Conclusions: the use of nanoparticles in endodontics is a promising option in root canal therapy, all nanoparticles reviewed in this research demonstrated antimicrobial effectiveness in root canals, further in-vivo studies are recommended to determine adverse effects, cytotoxicity and efficacy in different types of microorganisms.

Gustavo Adolfo Tovar Rangel , Universidad del Valle, Facultad de Salud, Escuela de Odontología, Departamento de Endodoncia, Cali, Colombia.

Universidad del Valle, Facultad de Salud, Escuela de Odontología, Departamento de Endodoncia, Cali, Colombia.

Fanny Mildred González Sáenz , Universidad del Valle, Facultad de Salud, Escuela de Odontología, Departamento de Endodoncia, Cali, Colombia.

Universidad del Valle, Facultad de Salud, Escuela de Odontología, Departamento de Endodoncia, Cali, Colombia.

Ingrid Ximena Zamora Córdoba , Universidad del Valle, Facultad de Salud, Escuela de Odontología, Departamento de Endodoncia, Cali, Colombia.

Universidad del Valle, Facultad de Salud, Escuela de Odontología, Departamento de Endodoncia, Cali, Colombia.

Lina María García Zapata , Universidad del Valle, Facultad de Salud, Escuela de Odontología, Departamento de Endodoncia, Cali, Colombia.

Universidad del Valle, Facultad de Salud, Escuela de Odontología, Departamento de Endodoncia, Cali, Colombia.

Tovar Rangel , G. A., González Sáenz , F. M., Zamora Córdoba , I. X., & García Zapata , L. M. (2023). Nanopartículas antimicrobianas en endodoncia: Revisión narrativa. Revista Estomatología, 31(2). https://doi.org/10.25100/re.v31i2.13478

Raura N, Garg A, Arora A, Roma M. Nanoparticle technology and its implications in endodontics : a review. 2020;1–8. DOI: https://doi.org/10.1186/s40824-020-00198-z

Mohammadi Z. Sodium hypochlorite in endodontics : an update review. 2008;329–41. DOI: https://doi.org/10.1111/j.1875-595X.2008.tb00354.x

Article R. Antibacterial Nanoparticles in Endodontics : 2016;42(10):1417–26 DOI: https://doi.org/10.1016/j.joen.2016.05.021

Oncu A, Huang Y, Amasya G, Sevimay FS, Orhan K, Celikten B. Silver nanoparticles in endodontics: recent developments and applications. Restor Dent Endod. 2021;46(3):1–13. DOI: https://doi.org/10.5395/rde.2021.46.e38

Ramamoorthi M, Bakkar M, Jordan J, Tran SD. Osteogenic Potential of Dental Mesenchymal Stem Cells in Preclinical Studies : A Systematic Review Using Modified ARRIVE and CONSORT Guidelines. 2015;2015 DOI: https://doi.org/10.1155/2015/378368

Afkhami F, Akbari S, Chiniforush N. Entrococcus faecalis Elimination in Root Canals Using Silver Nanoparticles , Photodynamic Therapy , Diode Laser , or Laser-activated Nanoparticles : An In Vitro Study. J Endod [Internet]. 2016;10–3. Available from: http://dx.doi.org/10.1016/j.joen.2016.08.029 DOI: https://doi.org/10.1016/j.joen.2016.08.029

Nanoparticles B, Shrestha A, Kishen A. Antibiofilm Efficacy of Photosensitizer-functionalized. J Endod [Internet]. 2014;1–7. Available from: http://dx.doi.org/10.1016/j.joen.2014.03.009 DOI: https://doi.org/10.1016/j.joen.2014.03.009

González-Luna PI, Martinez-Castanon GA, Zavala-Alonso NV, Patiño-Marin N, Niño-Martínez N, Morán-Martínez J, et al. Bactericide Effect of Silver Nanoparticles as a Final Irrigation Agent in Endodontics on Enterococcus faecalis: An Ex Vivo Study. J Nanomater. 2016;2016. DOI: https://doi.org/10.1155/2016/7597295

Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, et al. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? J Hazard Mater [Internet]. 2016;308:328–34. Available from: http://dx.doi.org/10.1016/j.jhazmat.2016.01.06 DOI: https://doi.org/10.1016/j.jhazmat.2016.01.066

Keskin NB, Aydın ZU, Uslu G, Özyürek T, Erdönmez D, Gündoğar M. Antibacterial efficacy of copper-added chitosan nanoparticles: a confocal laser scanning microscopy analysis. Odontology [Internet]. 2021;109(4):868–73. Available from: https://doi.org/10.1007/s10266-021-00613-4 DOI: https://doi.org/10.1007/s10266-021-00613-4

Facility N. Cover story. 2001;131(November 2000):1559–65- Nanodentistry R A Freitas Jr DOI: https://doi.org/10.14219/jada.archive.2000.0084

Almeida J, Cechella B, Bernardi A, Pimenta A, Felippe W. Effectiveness of nanoparticles solutions and conventional endodontic irrigants against Enterococcus faecalis biofilm 2018; 29-3 DOI: https://doi.org/10.4103/ijdr.IJDR_634_15

Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev [Internet]. 2009;61(6):428–37. Available from: http://dx.doi.org/10.1016/j.addr.2009.03.009

Liu T, Aman A, Ainiwaer M, Ding L, Zhang F, Hu Q, et al. Evaluation of the anti-biofilm effect of poloxamer-based thermoreversible gel of silver nanoparticles as a potential medication for root canal therapy. Sci Rep [Internet]. 2021;11(1):1–16. Available from: https://doi.org/10.1038/s41598-021-92081-7 DOI: https://doi.org/10.1038/s41598-021-92081-7

Giannousi K, Lafazanis K, Arvanitidis J, Pantazaki A, Dendrinou-Samara C. Hydrothermal synthesis of copper based nanoparticles: Antimicrobial screening and interaction with DNA. J Inorg Biochem [Internet]. 2014;133:24–32. Available from: http://dx.doi.org/10.1016/j.jinorgbio.2013.12.009 DOI: https://doi.org/10.1016/j.jinorgbio.2013.12.009

Rojas B, Soto N, Villalba M, Bello-Toledo H, Meléndrez-Castro M, Sánchez-Sanhueza G. Antibacterial activity of copper nanoparticles (Cunps) against a resistant calcium hydroxide multispecies endodontic biofilm. Nanomaterials. 2021;11(9). DOI: https://doi.org/10.3390/nano11092254

Prada I, Micó-muñoz P, Giner-lluesma T, Micó-martínez P, Collado-castellano N. Influence of microbiology on endodontic failure . Literature review. 2019;24(3). DOI: https://doi.org/10.4317/medoral.22907

Approach D, Catalytic U. HHS Novel Endodontic Disinfection Approach Using Catalytic Nanoparticles Public Access. 2019;44(5):806–12. DOI: https://doi.org/10.1016/j.joen.2017.12.003

Tomson PL, Simon SR. Contemporary cleaning and shaping. Prim Dent J. 2016;5(2):46–53. DOI: https://doi.org/10.1308/205016816819304196

Kumar A, Tamanna S, Iftekhar H. Intracanal medicaments – Their use in modern endodontics: A narrative review. J Oral Res Rev. 2019;11(2):94. DOI: https://doi.org/10.4103/jorr.jorr_3_19

Mohammadi Z, Jafarzadeh H, Shalavi S, Palazzi F. Recent advances in root canal disinfection: A review. Iran Endod J. 2017;12(4):402–6.

Shoji MM, Chen AF. Biofilms in Periprosthetic Joint Infections: A Review of Diagnostic Modalities, Current Treatments, and Future Directions. J Knee Surg. 2020;33(2):119–31. DOI: https://doi.org/10.1055/s-0040-1701214

Wong J, Zou T, Lee AHC, Zhang C. The potential translational applications of nanoparticles in endodontics. Int J Nanomedicine. 2021;16:2087–106 DOI: https://doi.org/10.2147/IJN.S293518

Guirao Goris Silamani J. Adolf. Utilidad y tipos de revisión de literatura [Internet]. Vol. 9, Ene. 2015. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1988-348X2015000200002&lng=es DOI: https://doi.org/10.4321/S1988-348X2015000200002

Prada I, Micó-muñoz P, Giner-lluesma T, Micó-martínez P, Muwaquet-rodríguez S. Update of the therapeutic planning of irrigation and intracanal medication in root canal treatment . A literature review. 2019;11(2). DOI: https://doi.org/10.4317/jced.55560

Karamifar K. Endodontic Periapical Lesion : An Overview on the Etiology , Diagnosis and Current Treatment Modalities. 2020 (6). DOI: https://doi.org/10.14744/eej.2020.42714

Song M, Kim HC, Lee W, Kim E. Analysis of the cause of failure in nonsurgical endodontic treatment by microscopic inspection during endodontic microsurgery. J Endod [Internet]. 2011;37(11):1516–9. Available from: http://dx.doi.org/10.1016/j.joen.2011.06.03 DOI: https://doi.org/10.1016/j.joen.2011.06.032

Tandra Das T, Pradeep S. Microbial etiology of root canal treatment failure. Int J Pharm Technol. 2016;8(3):4558–66

Neelakantan P, Romero M, Vera J, Daood U, Khan AU, Yan A, et al. Biofilms in Endodontics—Current status and future directions. Int J Mol Sci. 2017;18(8). DOI: https://doi.org/10.3390/ijms18081748

Souto R, Uzeda M De, Colombo AP. Actinomyces Species , Streptococci , and Enterococcus faecalis in Primary Root. 2002.

Dioguardi M, Di Gioia G, Illuzzi G, Arena C, Caponio VCA, Caloro GA, et al. Inspection of the microbiota in endodontic lesions. Dent J. 2019;7(2):1–15. DOI: https://doi.org/10.3390/dj7020047

Susila A, Minu J. Activated irrigation vs. Conventional non-activated irrigation in endodontics – A systematic review. Eur Endod J. 2019;4(3):96–110. DOI: https://doi.org/10.14744/eej.2019.80774

Rosalin Hongsathavij, Yosvi Mol Kuparuk KR. Effectiveness of platelet-rich fibrin in the management of pain and delayed wound healing. Eur J Dent. 2017;11(4):192–5

Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK. Nanotechnology in dentistry : Present and future. 2014;6(October 2013):121–6.

Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020;15:2555–62. DOI: https://doi.org/10.2147/IJN.S246764

Staff R. Nanotecnología, nanopartículas y toxicidad. Rev Enfermería del Trab. 2015;5(1):21–7.

Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, et al. Protein Corona-Mediated Mitigation of Cytotoxicity of Graphene Oxide. 2011;(5):3693–700 DOI: https://doi.org/10.1021/nn200021j

Shrestha A, Zhilong S, Gee NK, Kishen A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod [Internet]. 2010;36(6):1030–5. Available from: http://dx.doi.org/10.1016/j.joen.2010.02.008 DOI: https://doi.org/10.1016/j.joen.2010.02.008

Guerreiro-Tanomaru JM, Trindade-Junior A, César Costa B, Da Silva GF, Drullis Cifali L, Basso Bernardi MI, et al. Effect of Zirconium Oxide and Zinc Oxide Nanoparticles on Physicochemical Properties and Antibiofilm Activity of a Calcium Silicate-Based Material. Sci World J. 2014;2014. DOI: https://doi.org/10.1155/2014/975213

Waltimo T, Mohn D, Paqué F, Brunner TJ, Stark WJ, Imfeld T, et al. Fine-tuning of Bioactive Glass for Root Canal Disinfection. 2009;235–8 DOI: https://doi.org/10.1177/0022034508330315

Ferreira JC, Almeida C, Melo PR. Avaliação da Eficácia do nanoXIM CarePaste na oclusão dos túbulos dentinários. 2015;(January):34104.

Slenters TV, Hauser-Gerspach I, Daniels AU, Fromm KM. Silver coordination compounds as light-stable, nano-structured and anti-bacterial coatings for dental implant and restorative materials. J Mater Chem. 2008;18(44):5359–62. DOI: https://doi.org/10.1039/b813026d

Zawadzka-knefel A, Luboja A. Nanomaterials Application in Endodontics. 2021. 1–34

Balderas C, Bazán K, Molina E, Monjáras A. Uso y aplicación de Nanopartículas de plata en Odontología Use and application of silver nanoparticles in dentistry. Boletín Científico Inst Ciencias de la Salud-UAEH. 2020;8(16):96–100 DOI: https://doi.org/10.29057/icsa.v8i16.5800

Noronha VT, Paula AJ, Durán G, Galembeck A, Cogo-Müller K, Franz-Montan M, et al. Silver nanoparticles in dentistry. Dent Mater [Internet]. 2017;33(10):1110–26. Available from: http://dx.doi.org/10.1016/j.dental.2017.07.002 DOI: https://doi.org/10.1016/j.dental.2017.07.002

Kanaparthy R, Kanaparthy A. The changing face of dentistry: nanotechnology. Int J Nanomedicine. 2011;6:2799–804. DOI: https://doi.org/10.2147/IJN.S24353

Bhateja Sumit & Arora Geetika. of Dental Sciences. Indian J Dent Sci. 2013;5(3):24–5.

Carvajal CC. Especies reactivas del oxígeno: formación, función y estrés oxidativo. Med Leg Costa Rica [Internet]. 2019;36(1):91–100. Available from: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-00152019000100091&lang=es

Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev [Internet]. 2009;61(6):428–37. Available from: http://dx.doi.org/10.1016/j.addr.2009.03.009 DOI: https://doi.org/10.1016/j.addr.2009.03.009

Sundaram D, Narayanan RK, Vadakkepurayil K. A comparative evaluation on antimicrobial effect of honey, neem leaf extract and sodium hypochlorite as intracanal irrigant: An ex-vivo study. J Clin Diagnostic Res. 2016;10(8):ZC88–91. DOI: https://doi.org/10.7860/JCDR/2016/19268.8311

Kleier DJ, Averbach RE, Mehdipour O. The Sodium Hypochlorite Accident: Experience of Diplomates of the American Board of Endodontics. J Endod. 2008;34(11):1346–50. DOI: https://doi.org/10.1016/j.joen.2008.07.021

Chia MSY, Parolia A, Lim BSH, Jayaraman J, Porto ICC de M. Effect of QMix irrigant in removal of smear layer in root canal system: a systematic review of in vitro studies . Restor Dent Endod.

Afkhami F, Nasri S, Valizadeh S. Bacterial leakage assessment in root canals sealed with AH Plus sealer modified with silver nanoparticles. BMC Oral Health [Internet]. 2021;21(1):1–7. Available from: https://doi.org/10.1186/s12903-021-01924-2 DOI: https://doi.org/10.1186/s12903-021-01924-2

Obeid MF, El-Batouty KM, Aslam M. The effect of using nanoparticles in bioactive glass on its antimicrobial properties. Restor Dent Endod. 2021;46(4):1–8. DOI: https://doi.org/10.5395/rde.2021.46.e58

Marín-Correa BM, Guzmán-Martínez N, Gómez-Ramírez M, Pless RC, Mundo JR, García-Ramos JC, et al. Nanosilver gel as an endodontic alternative against Enterococcus faecalis in an in vitro root canal system in Mexican dental specimens. New Microbiol. 2020;43(4):166–70.

Kushwaha V, Yadav RK, Tikku AP, Chandra A, Verma P, Gupta P, et al. Comparative evaluation of antibacterial effect of nanoparticles and lasers against Endodontic Microbiota: An in vitro study. J Clin Exp Dent. 2018;10(12):1155–60 DOI: https://doi.org/10.4317/jced.55076

Aydın H, Er K, Kuştarcı A, Akarsu M, Gençer GM, Er H, et al. Antibacterial activity of silver nanoparticles activated by photodynamic therapy in infected root canals. Dent Med Probl. 2020;57(4):393–400 DOI: https://doi.org/10.17219/dmp/123615

Hendi SS, Shiri M, Poormoradi B, Alikhani MY, Afshar S, Farmani A. Antibacterial Effects of a 940 nm Diode Laser With/ Without Silver Nanoparticles Against Enterococcus faecalis. J Lasers Med Sci. 2021;12(1):1–8 DOI: https://doi.org/10.1155/2021/6659146

Afhkami F, Ahmadi P, Chiniforush N, Sooratgar A. Effect of different activations of silver nanoparticle irrigants on the elimination of Enterococcus faecalis. Clin Oral Investig. 2021;25(12):6893–9 DOI: https://doi.org/10.1007/s00784-021-03979-5

Afkhami F, Pourhashemi SJ, Sadegh M, Salehi Y, Fard MJK. Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis. J Dent [Internet]. 2015;43(12):1573–9. Available from: http://dx.doi.org/10.1016/j.jdent.2015.08.012 DOI: https://doi.org/10.1016/j.jdent.2015.08.012

Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al. Effect of propolis nanoparticles against enterococcus faecalis biofilm in the root canal. Molecules. 2021;26(3):1–17. DOI: https://doi.org/10.3390/molecules26030715

Del Carpio-Perochena A, Bramante CM, Duarte MAH, de Moura MR, Aouada FA, Kishen A. Chelating and antibacterial properties of chitosan nanoparticles on dentin. Restor Dent Endod. 2015;40(3):195. DOI: https://doi.org/10.5395/rde.2015.40.3.195

Roshdy NN, Kataia EM, Helmy NA. Assessment of antibacterial activity of 2.5 % NaOCl , chitosan nano-particles against Enterococcus faecalis contaminating root canals with and without diode laser irradiation : an in vitro study. Acta Odontol Scand [Internet]. 2018;0(0):1–5. Available from: https://doi.org/10.1080/00016357.2018.1498125 DOI: https://doi.org/10.1080/00016357.2018.1498125

Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A. Effectiveness of chitosan-propolis nanoparticles against Enterococcus faecalis biofilms in the root canal. BMC Oral Health [Internet]. 2020;20(1). Available from: https://doi.org/10.1186/s12903-020-01330-0 DOI: https://doi.org/10.1186/s12903-020-01330-0

Tom C. Pagonis, DDS, MS, Judy Chen, DDS, Carla Raquel Fontana, DDS, PhD, Harikrishna Devalapally, PhD, Karriann Ruggiero, BS, Xiaoqing Song, Nanoparticle-based endodontic antimicrobial photodynamic therapy, J Endod. 2010 February ;36(2): 322. doi: 10.1016/j.joen.2009.10.011. DOI: https://doi.org/10.1016/j.joen.2009.10.011

Makkar H, Patri G. Fabrication and appraisal of poly (Lactic-co-Glycolic Acid) – Moxifloxacin nanoparticles using vitamin E-TPGS: A potential intracanal drug delivery agent. J Clin Diagnostic Res. 2017;11(6):ZC05–8. DOI: https://doi.org/10.7860/JCDR/2017/27633.9957

Nanoparticles MC, Leng D, Li Y, Zhou Y. The Antibio fi lm Activity and Mechanism of Nanosilver- and Nanozinc-Incorporated. 2020;3921–36.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.